Publications by authors named "A Antillon"

MBA cell-based synchrotron light sources have enabled an unprecedented increase in beam coherence and brightness, greatly benefiting the scientific disciplines that rely on X-ray techniques. However, controlling the electron dynamics is a theoretical and technological challenge, due to the large number of parameters to adjust and constraints to satisfy when designing modern synchrotrons. Having versatile tools for the description and manipulation of electron dynamics could favor the design of these accelerators and lead to progress on several fronts in the understanding of matter.

View Article and Find Full Text PDF

The objective of this article is to propose a scheme to increase the stability zone of a charged particles beam in synchrotrons using a suitable objective function that, when optimized, inhibits the resonances onset in phase space and the dynamic aperture of electrons in storage rings can be improved. The proposed technique is implemented by constructing a quasi-invariant in a neighborhood of the origin of the phase space, then, by using symbolic computation software, sets of coupled differential equations for functions involved in nonlinear dynamics are obtained and solved numerically with periodic boundary conditions. The objective function is constructed by proposing that the innermost momentum solution branch of the polynomial quasi-invariant approaches to the corresponding ellipse of the linear dynamics.

View Article and Find Full Text PDF

The development of new strategies for achieving stable asymmetric membrane models has turned interleaflet lipid asymmetry into a topic of major interest. Cyclodextrin-mediated lipid exchange constitutes a simple and versatile method for preparing asymmetric membrane models without the need for sophisticated equipment. Here we describe a protocol for preparing asymmetric supported lipid bilayers mimicking membrane rafts by cyclodextrin-mediated lipid exchange and the main guidelines for obtaining structural information and quantitative measures of their mechanical properties using Atomic force microscopy and Force spectroscopy; two powerful techniques that allow membrane characterization at the nanoscale.

View Article and Find Full Text PDF

Cell spreading and phagocytosis are notably regulated by small GTPases and GAP proteins. TBC1D10C is a dual inhibitory protein with GAP activity. In immune cells, TBC1D10C is one of the elements regulating lymphocyte activation.

View Article and Find Full Text PDF

Sphingolipids-enriched rafts domains are proposed to occur in plasma membranes and to mediate important cellular functions. Notwithstanding, the asymmetric transbilayer distribution of phospholipids that exists in the membrane confers the two leaflets different potentials to form lateral domains as next to no sphingolipids are present in the inner leaflet. How the physical properties of one leaflet can influence the properties of the other and its importance on signal transduction across the membrane are questions still unresolved.

View Article and Find Full Text PDF