Publications by authors named "A Anav"

Tropospheric ozone (O) concentrations in the Northern Hemisphere have significantly increased since the pre-industrial era, with ongoing growth driven by emissions from industrial, agricultural, and transportation activities, further exacerbated by the warming temperatures and altered atmospheric circulation patterns associated with climate change. This study compared different methodologies for estimating biomass potential losses (BPL) in forests due to elevated O using both concentration-based (AOT40) and flux-based (POD1) metrics. Moreover, to further assess the impact of O on forest health and carbon uptake across the dominant forest types in the Northern Hemisphere, we also compared BPL estimates from dose-response functions with those derived from the process-based model ORCHIDEE.

View Article and Find Full Text PDF

Extreme climatic conditions, like heat waves or cold spells, associated to high concentrations of air pollutants are responsible for a broad range of effects on human health. Consequently, in the recent years, the question on how urban and peri-urban forests may improve both air quality and surface climate conditions at city-scale is receiving growing attention by scientists and policymakers, with previous studies demonstrating how nature-based solutions (NBS) may contribute to reduce the risk of population to be exposed to high pollutant levels and heat stress, preventing, thus, premature mortality. In this study we present a new modeling framework designed to simulate air quality and meteorological conditions from regional to urban scale, allowing thus to assess the impacts of both air pollution and heat stress on human health at urban level.

View Article and Find Full Text PDF

Quantifying the stomatal responses of plants to global change factors is crucial for modeling terrestrial carbon and water cycles. Here we synthesize worldwide experimental data to show that stomatal conductance (g) decreases with elevated carbon dioxide (CO), warming, decreased precipitation, and tropospheric ozone pollution, but increases with increased precipitation and nitrogen (N) deposition. These responses vary with treatment magnitude, plant attributes (ambient g, vegetation biomes, and plant functional types), and climate.

View Article and Find Full Text PDF

This study presents an approach developed to derive a Delayed-Multivariate Exposure-Response Model (D-MERF) useful to assess the short-term influence of temperature on mortality, accounting also for the effect of air pollution (O and PM). By using Distributed, lag non-linear models (DLNM) we explain how city-specific exposure-response functions are derived for the municipality of Rome, which is taken as an example. The steps illustrated can be replicated to other cities while the statistical model presented here can be further extended to other exposure variables.

View Article and Find Full Text PDF

Heat and cold temperatures associated with exposure to poor air quality lead to increased mortality. Using a generalized linear model with Poisson regression for overdispersion, this study quantifies the natural-caused mortality burden attributable to heat/cold temperatures and PM and O air pollutants in Rome and Milan, the two most populated Italian cities. We calculate local-specific mortality relative risks (RRs) for the period 2004-2015 considering the overall population and the most vulnerable age category (≥85 years).

View Article and Find Full Text PDF