Two distinct types of rare crystal-rich mafic enclaves have been identified in the rhyolite lava flow from the 2011-12 Cordón Caulle eruption (Southern Andean Volcanic Zone, SVZ). The majority of mafic enclaves are coarsely crystalline with interlocking olivine-clinopyroxene-plagioclase textures and irregular shaped vesicles filling the crystal framework. These enclaves are interpreted as pieces of crystal-rich magma mush underlying a crystal-poor rhyolitic magma body that has fed recent silicic eruptions at Cordón Caulle.
View Article and Find Full Text PDFHypothesis: The injection of air into the sample cell of an isothermal titration calorimeter containing a liquid provides a rich-in-information signal, with a periodic contribution arising from the creation, growing and release of bubbles. The identification and analysis of such contributions allow the accurate determination of the surface tension of the target liquid.
Experiments: Air is introduced at a constant rate into the sample cell of the calorimeter containing either a pure liquid or a solution.
Here we show that by adjusting the concentration of tetrabutyl ammonium and phosphonium salts in water (≈1.5-2.0 m), hydrophobic solvation triggers the formation of a unique, highly incompressible supramolecular liquid, with a dynamic structure similar to clathrates, involving essentially all H O molecules of the solvent.
View Article and Find Full Text PDFThe interaction of water with small alcohols can be used as a model for understanding hydrophobic solvation of larger and more complex amphiphilic molecules. Despite its apparent simplicity, water/ethanol mixtures show important anomalies in several of their properties, like specific heat or partial molar volume, whose precise origin are still a matter of debate. Here we report high-resolution thermal conductivity, compressibility, and IR-spectroscopy data for water/ethanol solutions showing three distinct regions of solvation, related to changes in the H-bond network.
View Article and Find Full Text PDF