Changes in the organization and structure of the fibronectin matrix are believed to contribute to dysregulated wound healing and subsequent tissue inflammation and tissue fibrosis. These changes include an increase in the EDA isoform of fibronectin as well as the mechanical unfolding of fibronectin type III domains. In previous studies using embryonic foreskin fibroblasts, we have shown that fibronectin's EDA domain (FnEDA) and the partially unfolded first Type III domain (FnIII-1c) function as Damage Associated Molecular Pattern (DAMP) molecules to stimulate the induction of inflammatory cytokines by serving as agonists for Toll-Like Receptor-4 (TLR4).
View Article and Find Full Text PDFThe microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs).
View Article and Find Full Text PDFChronic inflammation and subsequent tissue fibrosis are associated with a biochemical and mechanical remodeling of the fibronectin matrix. Due to its conformational lability, fibronectin is considerably stretched by the contractile forces of the fibrotic microenvironment, resulting in the unfolding of its Type III domains. In earlier studies, we have shown that a peptide mimetic of a partially unfolded fibronectin Type III domain, FnIII-1c, functions as a Damage Associated Molecular Pattern (DAMP) molecule to induce activation of a toll-like receptor 4 (TLR4)/NF-B pathway and the subsequent release of fibro-inflammatory cytokines from human dermal fibroblasts.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
October 2017
Dysfunctional remodeling of the extracellular matrix contributes to the formation of TLR-dependent feed forward loops that drive chronic inflammation. We have previously shown that two Type III domains of Fibronectin, FnEDA and FnIII-1c, cooperate to induce the synergistic release of interleukin 8 (IL-8) from dermal fibroblasts. We now identify steps in the TLR4 pathway where synergy can be demonstrated as well as additional kinases functioning in fibronectin activation of TLR4 signaling.
View Article and Find Full Text PDFAlternative splicing of fibronectin increases expression of the EDA isoform of fibronectin (EDAFn), a damage-associated molecular pattern molecule, which promotes fibro-inflammatory disease through the activation of toll-like receptors. Our studies indicate that the fibronectin EDA domain drives two waves of gene expression in human dermal fibroblasts. The first wave, seen at 2 hours, consisted of inflammatory genes, VCAM1, and tumor necrosis factor.
View Article and Find Full Text PDF