Publications by authors named "A Amantana"

Plasma pharmacokinetics of ST-246, smallpox therapeutic, was evaluated in mice, rabbits, monkeys and dogs following repeat oral administrations by gavage. The dog showed the lowest Tmax of 0.83 h and the monkey, the highest value of 3.

View Article and Find Full Text PDF

Background: ST-246® is an antiviral, orally bioavailable small molecule in clinical development for treatment of orthopoxvirus infections. An intravenous (i.v.

View Article and Find Full Text PDF

Therapeutics for the treatment of pathogenic orthopoxvirus infections are being sought. In the absence of patients with disease, animal models of orthopoxvirus disease are essential for evaluation of the efficacies of antiviral drugs and establishment of the appropriate dose and duration of human therapy. Infection of nonhuman primates (NHP) by the intravenous injection of monkeypox virus has been used to evaluate a promising therapeutic drug candidate, ST-246.

View Article and Find Full Text PDF

Objectives: To determine the antiviral activity of phosphorodiamidate morpholino oligomers (PMO) and peptide-conjugated PMO (PPMO) in AG129 mice infected with dengue 2 virus (DENV-2).

Methods: Antisense PMO and PPMO were designed against the 5' terminal region (5'SL) or the 3'-cyclization sequence region (3'CS) of DENV genomic RNA and administered to AG129 mice before and/or after infection with DENV-2. In addition, cell culture evaluations designed to determine optimum PPMO length, and pharmacokinetic and toxicity analysis of PPMO were also carried out.

View Article and Find Full Text PDF

Objective: Conjugation of arginine-rich cell-penetrating peptide (CPP) to phosphorodiamidate morpholino oligomers (PMO) has been shown to enhance cytosolic and nuclear delivery of PMO. However, the in vivo disposition of CPP-PMO is largely unknown. In this study, we investigated the pharmacokinetics, tissue distribution, stability, and safety profile of an anti-c-myc PMO conjugated to the CPP, (RXR)4 (X = 6-aminohexanoic acid) in rats.

View Article and Find Full Text PDF