Blood testing has traditionally been the gold standard for the physiological analysis and monitoring of professional athletes. In recent years, blood testing has moved out of the laboratory thanks to portable handheld devices, such as lactate meters. However, despite its usefulness and widespread use, blood testing has several drawbacks and limitations, such as the need for the athlete to stop exercising for blood extraction and the inability to have data continuously collected.
View Article and Find Full Text PDFRapid diagnostic tests (RDTs) for point-of-care (POC) testing of infectious diseases are popular because they are easy to use. However, RDTs have limitations such as low sensitivity and qualitative responses that rely on subjective visual interpretation. Additionally, RDTs are made using paper-bound reagents, which leads to batch-to-batch variability, limited storage stability and detection of only the analytes they were designed for.
View Article and Find Full Text PDFA novel self-powered point-of-care low-power electronics approach for galvanic cell-based sample concentration measurement is presented. The electronic system harvests and senses at the same time from the single cell. The system implements a solution that is suitable in those scenarios where extreme low power is generated from the fuel cell.
View Article and Find Full Text PDFConsiderable efforts are made to develop Point-of-Care (POC) diagnostic tests. POC devices have the potential to match or surpass conventional systems regarding time, accuracy, and cost, and they are significantly easier to operate by or close to the patient. This strongly depends on the availability of miniaturized measurement equipment able to provide a fast and sensitive response.
View Article and Find Full Text PDF