A fundamental understanding of the acid gas (HS and CO) chemistry is key to efficiently implement the desulphurisation process and even the production of clean fuels such as hydrogen or syngas. In this work, we developed a new kinetic model for the pyrolysis and oxidation of hydrogen sulphide by merging two previously reported models with the goal of covering a wider range of conditions and including the effect of carbon dioxide. The resulting model, which consists of 75 species and 514 reactions, was used to conduct rate of production and sensitivity analysis in plug flow reactor simulations, and the results were used to determine the most prominent reactions in which hydrogen sulphide, molecular hydrogen, and sulphur monoxide are involved.
View Article and Find Full Text PDFTo understand and quantify casing wear during drilling operations, an experimental setup with real drill pipe joints (DPJ) and casings was designed and used to carry out wear tests, simulating various operating conditions and environments. P110 steel casing samples were tested under dry and wet conditions. Actual field oil- and water-based fluids were utilized to lubricate the contact area at two different side loads (1000 N and 1400 N) and DPJ speeds (115 and 207 rpm).
View Article and Find Full Text PDF