Publications by authors named "A Almagri"

Current-carrying, toroidal laboratory plasmas typically cannot be sustained with an electron density above the empirical Greenwald limit. Presented here are tokamak experiments in the Madison Symmetric Torus with a density up to an unprecedented level about 10 times this limit. This is thought to be made possible in part by a thick, stabilizing, conductive wall, and a high-voltage, feedback-controlled power supply driving the plasma current.

View Article and Find Full Text PDF

This paper presents the development of an all-in-one probe to simultaneously measure all components of the generalized Ohm's law in reversed-field pinch plasmas and tokamaks. The polyhedral configuration of the Mach probe is achieved through the specific arrangement, angle, and depth of the collimator channel apertures drilled into the surface of a hollow boron nitride cylinder encasing it. This probe includes a central Mach probe to assess the ion velocity field in three dimensions.

View Article and Find Full Text PDF

Measurements and simulations show that plasma relaxation processes in the reversed field pinch drive and redistribute both magnetic flux and momentum. To examine this relaxation process, a new 3D Mach B-dot probe has been constructed. This probe collects ion saturation currents through six molybdenum electrodes arranged on the flattened vertices of an octahedron made of boron nitride (BN).

View Article and Find Full Text PDF

Zonal flow appears in toroidal, magnetically confined plasmas as part of the self-regulated interaction of turbulence and transport processes. For toroidal plasmas having a strong toroidal magnetic field, the zonal flow is predominately poloidally directed. This Letter reports the first observation of a zonal flow that is toroidally directed.

View Article and Find Full Text PDF