Oxytocin is primarily synthesised in the brain and is widely known for its role in lactation and parturition after being released into the blood from the posterior pituitary gland. Nevertheless, peripheral tissues have also been reported to express oxytocin. Using systemic injection of a recombinant adeno-associated virus vector, we investigated the expression of the green fluorescent protein Venus under the control of the oxytocin promoter in the gastrointestinal tract, pancreas and testes of adult rats.
View Article and Find Full Text PDFPhysiological circadian rhythms are orchestrated by the hypothalamic suprachiasmatic nucleus (SCN). The activity of SCN cells is synchronised by environmental signals, including light information from retinal ganglion cells (RGCs). We recently described a population of vasopressin-expressing RGCs (VP-RGC) that send axonal projections to the SCN.
View Article and Find Full Text PDFIn the main olfactory system, odours are registered at the main olfactory epithelium and are then processed at the main olfactory bulb (MOB) and, subsequently, by the anterior olfactory nucleus (AON), the piriform cortex (PC) and the cortical amygdala. Previously, we reported populations of vasopressin neurones in different areas of the rat olfactory system, including the MOB, accessory olfactory bulb (AOB) and the AON and showed that these are involved in the coding of social odour information. Utilising immunohistochemistry and a transgenic rat in which an enhanced green fluorescent protein reporter gene is expressed in vasopressin neurones (eGFP-vasopressin), we now show a population of vasopressin neurones in the PC.
View Article and Find Full Text PDFKey Points: A subpopulation of retinal ganglion cells expresses the neuropeptide vasopressin. These retinal ganglion cells project predominately to our biological clock, the suprachiasmatic nucleus (SCN). Light-induced vasopressin release enhances the responses of SCN neurons to light.
View Article and Find Full Text PDFEffective relief from chronic hypersensitive pain states remains an unmet need. Here we report the discovery that the TRPM8 ion channel, co-operating with the 5-HT(1B) receptor (5-HT(1B)R) in a subset of sensory afferents, exerts an influence at the spinal cord level to suppress central hypersensitivity in pain processing throughout the central nervous system. Using cell line models, ex vivo rat neural tissue and in vivo pain models, we assessed functional Ca(2+) fluorometric responses, protein:protein interactions, immuno-localisation and reflex pain behaviours, with pharmacological and molecular interventions.
View Article and Find Full Text PDF