The full exploitation of the outstanding mechanical properties of cellulose nanofibrils (CNFs) as potential reinforcements in nanocomposite materials is limited by the poor interactions at the CNF-polymer matrix interface. Within this work, tailor-made copolymers were designed to mediate the interface between CNFs and biodegradable poly(butylene adipate--terephthalate) (PBAT), and their effect on extruded nanocomposite performance was tested. For this purpose, two well-defined amphiphilic anchor-tail diblock copolymer structures were compared, with a fixed anchor block length and a large difference in the hydrophobic tail block length.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
There is a growing demand for biobased functional materials that can ensure targeted pesticide delivery and minimize active ingredient loss in the agricultural sector. In this work, we demonstrated the use of esterified lignin nanoparticles (ELNPs) as carriers and controlled-release agents of hydrophobic compounds. Curcumin was selected as a hydrophobic model compound and was incorporated during ELNP fabrication with entrapment efficiencies exceeding 95%.
View Article and Find Full Text PDFHow turbulent convective fluctuations organize to form larger-scale structures in planetary atmospheres remains a question that eludes quantitative answers. The assumption that this process is the result of an inverse cascade was suggested half a century ago in two-dimensional fluids, but its applicability to atmospheric and oceanic flows remains heavily debated, hampering our understanding of the energy balance in planetary systems. We show using direct numerical simulations with spatial resolutions of 12288 × 384 points that rotating and stratified flows can support a bidirectional cascade of energy, in three dimensions, with a ratio of Rossby to Froude numbers comparable to that of Earth's atmosphere.
View Article and Find Full Text PDFTo address the increasing demand for biobased materials, lignin-derived ferulic acid (FA) is a promising candidate. In this study, an FA-derived styrene-like monomer, referred to as 2-methoxy-4-vinylphenol (MVP), was used as the platform to prepare functional monomers for radical polymerizations. Hydrophobic biobased monomers derived from MVP were polymerized via solution and emulsion polymerization resulting in homo- and copolymers with a wide range of thermal properties, thus showcasing their potential in thermoplastic applications.
View Article and Find Full Text PDFThe presence of large scale magnetic fields in nature is often attributed to the inverse cascade of magnetic helicity driven by turbulent helical dynamos. In this Letter, we show that in turbulent helical dynamos, the inverse flux of magnetic helicity toward the large scales Π_{H} is bounded by |Π_{H}|≤cεk_{η}^{-1}, where ε is the energy injection rate, k_{η} is the Kolmogorov magnetic dissipation wave number, and c an order one constant. Assuming the classical isotropic turbulence scaling, the inverse flux of magnetic helicity Π_{H} decreases at least as a -3/4 power law with the magnetic Reynolds number Rm: |Π_{H}|≤cεℓ_{f}Rm^{-3/4}max[Pm,1]^{1/4}, where Pm is the magnetic Prandtl number and ℓ_{f} the forcing length scale.
View Article and Find Full Text PDF