Better understanding of feeding behaviour will be vital in reducing obesity and metabolic syndrome, but we lack a standard model that captures the complexity of feeding behaviour. We construct an accurate stochastic model of rodent feeding at the bout level in order to perform quantitative behavioural analysis. Analysing the different effects on feeding behaviour of peptide YY3-36 (PYY3-36), lithium chloride, glucagon-like peptide 1 (GLP-1), and leptin shows the precise behavioural changes caused by each anorectic agent.
View Article and Find Full Text PDFObesity (Silver Spring)
November 2018
Objective: The satiating effect of protein compared with other nutrients has been well described and is thought to be mediated, in part, by gut hormone release. Previously, it has been shown that oral L-arginine acts as a GLP-1 secretagogue both in vitro and in vivo in rodents. Here, the effect of L-arginine on gut hormone release in humans was investigated.
View Article and Find Full Text PDFObjective: High-protein diets (HPDs) are associated with greater satiety and weight loss than diets rich in other macronutrients. The exact mechanisms by which HPDs exert their effects are unclear. However, evidence suggests that the sensing of amino acids produced as a result of protein digestion may have a role in appetite regulation and satiety.
View Article and Find Full Text PDFDiabetes Obes Metab
May 2016
Aims: To investigate the anorectic effect of L-arginine (L-Arg) in rodents.
Methods: We investigated the effects of L-Arg on food intake, and the role of the anorectic gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), the G-protein-coupled receptor family C group 6 member A (GPRC6A) and the vagus nerve in mediating these effects in rodents.
Results: Oral gavage of L-Arg reduced food intake in rodents, and chronically reduced cumulative food intake in diet-induced obese mice.
Objective: The G-protein coupled receptor family C group 6 member A (GPRC6A) is activated by proteinogenic amino acids and may sense amino acids in the gastrointestinal tract and the brain. The study investigated whether GPRC6A was necessary for the effects of low- and high-protein diets on body weight and food intake in mice.
Methods: The role of GPRC6A in mediating the effects of a low-protein diet on body weight was investigated in GPRC6a knockout (GPRC6a-KO) and wild-type (WT) mice fed a control diet (18% protein) or a low-protein diet (6% protein) for 9 days.