We study the dynamics of two non-stationary qubits, allowing for dipole-dipole and Ising-like interplays between them, coupled to quantized fields in the framework of two-mode pair coherent states of power-low potentials. We focus on three particular cases of the coherent states through the exponent parameter taken infinite square, triangular and harmonic potential wells. We examine the possible effects of such features on the evolution of some quantities of current interest, such as population inversion, entanglement among subsystems and squeezing entropy.
View Article and Find Full Text PDFA first-principles-based technique is developed to investigate the properties of Ba(Zr,Ti)O(3) relaxor ferroelectrics as a function of temperature. The use of this scheme provides answers to important, unresolved and/or controversial questions such as the following. What do the different critical temperatures usually found in relaxors correspond to? Do polar nanoregions really exist in relaxors? If yes, do they only form inside chemically ordered regions? Is it necessary that antiferroelectricity develop in order for the relaxor behavior to occur? Are random fields and random strains really the mechanisms responsible for relaxor behavior? If not, what are these mechanisms? These ab initio based calculations also lead to deep microscopic insight into relaxors.
View Article and Find Full Text PDF