There is a growing demand for new fluorescent small molecule dyes for solid state applications in the photonics and optoelectronics industry. Thiazolo[5,4-]thiazole (TTz) is an organic heterocycle moiety which has previously shown remarkable properties as a conjugated polymer and in solution-based studies. For TTz-based small molecules to be incorporated in solid-state fluorescence-based optical devices, a thorough elucidation of their structure-photophysical properties needs to be established.
View Article and Find Full Text PDFJ Speech Lang Hear Res
September 2024
Solvatofluorochromic molecules provide strikingly high fluorescent outputs to monitor a wide range of biological, environmental, or materials-related sensing processes. Here, thiazolo[5,4-d]thiazole (TTz) fluorophores equipped with simple alkylamino and nitrophenyl substituents for solid-state, high-performance chemo-responsive sensing applications are reported. Nitroaromatic substituents are known to strongly quench dye fluorescence, however, the TTz core subtly modulates intramolecular charge transfer (ICT) enabling strong, locally excited-state fluorescence in non-polar conditions.
View Article and Find Full Text PDFThe study of excited-state energy diffusion has had an important impact in the development and optimization of organic electronics. For instance, optimizing excited-state energy migration in the photoactive layer in an organic solar cell device has been shown to yield efficient solar energy conversion. Despite the crucial role that energy migration plays in molecular electronic device physics, there is still a great deal to be explored to establish how molecular orientation impacts energy diffusion mechanisms.
View Article and Find Full Text PDF