Although -adrenoceptor ( -AR) signal transduction, which maintains cardiac function, is downregulated in failing hearts, the mechanisms for such a defect in heart failure are not fully understood. Since cardiac hypertrophy is invariably associated with heart failure, it is possible that the loss of -AR mechanisms in failing heart occurs due to hypertrophic process. In this regard, we have reviewed the information from a rat model of adaptive cardiac hypertrophy and maladaptive hypertrophy at 4 and 24 weeks after inducing pressure overload as well as adaptive cardiac hypertrophy and heart failure at 4 and 24 weeks after inducing volume overload, respectively.
View Article and Find Full Text PDFAims: As necroptosis involving receptor-interacting protein kinase 3 (RIP3) and dynamin-related protein 1 (Drp1)-mediated signalling is a crucial mechanism of cell loss in heart failure (HF), we aimed to determine the potential diagnostic use of these molecules.
Methods And Results: The serum samples of the healthy subjects (n = 8) and patients with HF with reduced ejection fraction (n = 31), being subdivided according to the aetiology and New York Heart Association (NYHA) class, were used to measure RIP3 and Drp1 levels by enzyme-linked immunosorbent assay. Although the serum levels of Drp1 in the patients with HF were comparable with those seen in healthy individuals, we found a trend of increase in the levels of RIP3 (P = 0.
In order to determine the behavior of the right ventricle, we have reviewed the existing literature in the area of cardiac remodeling, signal transduction pathways, subcellular mechanisms, β-adrenoreceptor-adenylyl cyclase system and myocardial catecholamine content during the development of left ventricular failure due to myocardial infarction. The right ventricle exhibited adaptive cardiac hypertrophy due to increases in different signal transduction pathways involving the activation of protein kinase C, phospholipase C and protein kinase A systems by elevated levels of vasoactive hormones such as catecholamines and angiotensin II in the circulation at early and moderate stages of heart failure. An increase in the sarcoplasmic reticulum Ca transport without any changes in myofibrillar Ca-stimulated ATPase was observed in the right ventricle at early and moderate stages of heart failure.
View Article and Find Full Text PDFCardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males.
View Article and Find Full Text PDF