Philos Trans A Math Phys Eng Sci
March 2021
Semilocal strings-a particular limit of electroweak strings-are an interesting example of a stable non-topological defect whose properties resemble those of their topological cousins, the Abrikosov-Nielsen-Olesen vortices. There is, however, one important difference: a network of semilocal strings will contain segments. These are 'dumbbells' whose ends behave almost like global monopoles that are strongly attracted to one another.
View Article and Find Full Text PDFIn holographic inflation, the 4D cosmological dynamics is postulated to be dual to the renormalization group flow of a 3D Euclidean conformal field theory with marginally relevant operators. The scalar potential of the 4D theory-in which inflation is realized-is highly constrained, with use of the Hamilton-Jacobi equations. In multifield holographic realizations of inflation, fields additional to the inflaton cannot display underdamped oscillations (that is, their wave functions contain no oscillatory phases independent of the momenta).
View Article and Find Full Text PDFWe report the first observation of multiple intercommutation (more than two successive reconnections) of Abelian Higgs cosmic strings at ultrahigh collision speeds, and the formation of "kink trains" with up to four closely spaced left- or right-moving kinks, in the deep type-II regime 16 ≤ β ≤ 64 (where β=m(scalar)2/m(gauge)2). The minimum critical speed for double reconnection goes down from ∼0.98c at β = 1 to ∼0.
View Article and Find Full Text PDFMany models of baryogenesis rely on anomalous particle physics processes to give baryon number violation. By numerically evolving the electroweak equations on a lattice, we show that baryogenesis in these models creates helical cosmic magnetic fields, though the helicity created is smaller than earlier analytical estimates. After a transitory period, electroweak dynamics is found to conserve the Chern-Simons number and the total electromagnetic helicity.
View Article and Find Full Text PDF