Breast cancer is the leading cause of cancer death among women worldwide. The mammary gland is composed of various types of cells including luminal cells, fibroblasts, immune cells, adipocytes, and specific microbiota. The reciprocal interaction between these multiple types of cells can dictate the initiation and progression of cancer, as well as metastasis and response to therapy.
View Article and Find Full Text PDFBreast cancer (BC) is the most prevalent cancer and the leading cause of death among women worldwide. The osteoprotegerin (OPG) cytokine, a decoy receptor for RANKL and a key player in bone homeostasis, has pro-and anti-carcinogenic effects in various types of cancer, including breast neoplasms. In the present study, we have shown that ectopic expression of OPG in breast epithelial/cancer cells promotes the pro-metastatic processes epithelial-to-mesenchymal transition (EMT), stemness, angiogenesis as well as the activation of breast stromal fibroblasts.
View Article and Find Full Text PDFDecorin (DCN), a member of the small leucine-rich proteoglycan gene family, is secreted from stromal fibroblasts with non-cell-autonomous anti-breast-cancer effects. Therefore, in the present study, we sought to elucidate the function of decorin in breast stromal fibroblasts (BSFs). We first showed DCN downregulation in active cancer-associated fibroblasts (CAFs) compared to their adjacent tumor counterpart fibroblasts at both the mRNA and protein levels.
View Article and Find Full Text PDFThe primary site of metastasis for epithelial ovarian cancer (EOC) is the peritoneum, and it occurs through a multistep process that begins with adhesive contacts between cancer cells and mesothelial cells. Despite evidence that Notch signaling has a role in ovarian cancer, it is unclear how exactly it contributes to ovarian cancer omental metastasis, as well as the cellular dynamics and intrinsic pathways that drive this tropism. Here we show that tumor cells produced the Notch ligand Jagged2 is a clinically and functionally critical mediator of ovarian cancer omental metastasis by activating the Notch signaling in single-layered omental mesothelial cells.
View Article and Find Full Text PDFBreast cancer (BC) patient who receives chemotherapy for an extended length of time may experience profound repercussions in terms of metastases and clinical outcomes due to the involvement of the epithelial-to-mesenchymal transition (EMT) mechanism and enriched cancer stem cells (CSCs). BC cells that express high levels of lncRNA deleted in lymphocytic leukemia-2 (lncRNA DLEU2) and type I tyrosine kinase-like orphan receptor ROR1 (ROR1) may play roles in the enhanced ability of the activation EMT and CSC induction. Here we find that lncRNA DLEU2 and ROR1 are specifically upregulated in tumor tissues compared to their normal counterparts in TCGA, PubMed GEO datasets, and samples from archived breast cancer tumor tissues.
View Article and Find Full Text PDF