Publications by authors named "A Abou Elfadl"

Single-phase NiCoO(NCO) nanoparticles (NPs) with an average particle size of 12 (±3.5) nm were successfully synthesized as aggregates in urchin-like nanofibers via a hydrothermal route. Magnetization data measured as functions of temperature and magnetic field suggest a superparamagnetic-like behavior at room temperature, a ferrimagnetic transition around a Curie temperature∼ 200 K, and a spin blocking transition at a blocking temperature∼ 90 K, as observed at a field of 100 Oe.

View Article and Find Full Text PDF

Nanoporous aluminum metal-organic framework (Al-MOF) was synthesized via solvothermal methods and employed as a carrier matrix for in vitro drug delivery of Umbelliferon (Um). The encapsulated Um was gradually released over seven days at 37 °C, using simulated body fluid phosphate-buffered saline (PBS) at pH 7.4 as the release medium.

View Article and Find Full Text PDF

NiCrOnanoparticles with average particle size ∼15 nm, a single-domain size maintains the bulk canted antiferromagnetic ground state, were synthesized by a microwave combustion method. The magnetic behavior was carefully investigated by static and dynamic magnetic susceptibility measurements. In addition to a spin-glass-like behavior below paramagnetic-ferrimagnetic transition at, the NiCrOnanoparticles demonstrate a low-temperature cluster spin glass transition below the spin canting transition, which manifests itself as a magnetic anomaly peak around ∼12 K (at 100 Oe) in the zero-field cooled magnetization with a relatively stronger field dependence in a 'de Almeida-Thouless' line for spin glasses.

View Article and Find Full Text PDF

Polymeric films made from chitosan (CS) doped with metal oxide (MO = cobalt (II) oxide and strontium oxide) nanoparticles at different concentrations (5, 10, 15, and 20% wt. MO/CS) were fabricated with the solution cast method. FTIR, SEM, and XRD spectra were used to study the structural features of those nanocomposite films.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) develops from insulin resistance (IR) and the dysfunction of pancreatic beta cells. The AKT2 protein is very important for the protein signaling pathway, and the non-synonymous SNP (nsSNPs) in AKT2 gene may be associated with T2D. nsSNPs can result in alterations in protein stability, enzymatic activity, or binding specificity.

View Article and Find Full Text PDF