Publications by authors named "A Abiram"

Schiff base (HNPD) was achieved by reacting 2-hydroxy-1-naphthaldehyde with N-phenyl-o-phenylenediamine in enthanol medium. The spectroscopic analyses were done to establish the formation of Schiff base apparently. Further, synthesized Schiff base conjugate was successfully used as a fluorogenic chemosensor to detect aluminium ions (Al) with high fluorescence amplification among the other interfering various metal ions.

View Article and Find Full Text PDF

Dimeric quinoline-based Schiff base was developed (DQS) for the specific detection of Pb ion via fluorimetry. DQS coordinates with Pb, a variation in fluorescence intensity with enhanced radical blue shift was observed due to the restriction of CN rotation, CN isomerization, and photoinduced electron transfer (PET) mechanisms. In addition, the intramolecular charge transfer (ICT) from electron-donating morpholine to phenylene diamine acceptor linked quinoline bridge is responsible for the blue-shifted fluorescence enhancement in the DQS-Pb complex.

View Article and Find Full Text PDF

A quinoline-naphthalene duo-based Schiff base probe (R) was synthesized and characterized by the usual spectroscopic and single-crystal X-ray crystallographic techniques. Probe R detects Al and HSO ions via the fluorescent turn-on approach by dual pathways i.e.

View Article and Find Full Text PDF

A simple rhodanine derived fluorophoric unit has been designed for selective detection of Ag and I ions in DMSO-HO medium. The sensor R1 showed an obvious "turn-on" fluorescence response toward Ag due to the inhibition of both C-N single bond free rotation, internal charge transfer (ICT) and the formation of chelation enhanced fluorescence (CHEF) effects. The fluorescence quantum yield (Φ) was increased from 0.

View Article and Find Full Text PDF
Article Synopsis
  • A novel dimeric Schiff base probe has been developed for detecting aluminum (Al) and iron (Fe) ions, showing "turn-on" fluorescent and colorimetric responses in a specific solvent mixture.
  • The probe forms a 1:1 complex with the metal ions and operates based on inhibiting photoinduced electron transfer, enabling high sensitivity with detection limits in the nanomolar range.
  • Additional applications of the probe include electrochemical sensing, antimicrobial activity, molecular logic functions, and measuring trace levels of Al and Fe in real water samples.
View Article and Find Full Text PDF