Publications by authors named "A A Vetrova"

Most hydrozoan cnidarians form complex colonies that vary in size, shape, and branching patterns. However, little is known about the molecular genetic mechanisms responsible for the diversity of the hydrozoan body plans. The Nodal signaling pathway has previously been shown to be essential for setting up a new body axis in a budding Hydra.

View Article and Find Full Text PDF

Urban dust samples were collected in Moscow (Russia) in June 2021. The samples were collected in three functional zones of Moscow (traffic, residential, and recreational) and included air microparticles, leaf dust, and paved dust. Data on the taxonomic composition of bacterial communities were obtained for dust samples, and their functional characteristics were predicted using PICRUSt2 2.

View Article and Find Full Text PDF

Identifying the relationship between the microbiomes of urban dust particles from different biotopes is important because the state of microorganisms can be used to assess the quality of the environment. The aim of this work was to determine the distribution and interaction patterns of microorganisms of dust particles in the air and on leaf surfaces. Metabarcoding of bacterial and fungal communities, PAH, and metal content analyses and electron microscopy were used in this work.

View Article and Find Full Text PDF

Pressure ulcers (PUs) are caused by continuous pressure or friction on the skin that damages tissue, especially over bony prominences. A critical factor in the development and progression of PUs is poor nutritional status, which often involves deficiencies in essential nutrients such as proteins, vitamins (A, C, D, E, K, and the B complex), and trace elements (including zinc, selenium, copper, iron, and manganese). These micronutrients are vital for effective wound healing, as they play significant roles in cellular repair, immune function, and tissue regeneration.

View Article and Find Full Text PDF

Background: Vertebrate left-right symmetry breaking is preceded by formation of left-right organizer. In Amphibian, this structure is formed by gastrocoel roof plate, which emerges from superficial suprablastoporal cells. GRP is subdivided into medial area, which generates leftward flow by rotating monocilia and lateral Nodal1 expressing areas, which are involved in sensing of the flow.

View Article and Find Full Text PDF