The miniaturization of photonic technologies calls for a deliberate integration of diverse materials to enable novel functionalities in chip-scale devices. Topological photonic systems are a promising platform to couple structured light with solid-state matter excitations and establish robust forms of 1D polaritonic transport. Here, we demonstrate a mechanism to efficiently trap mid-IR structured phonon-polaritons in topological defects of a metasurface integrated with hexagonal boron nitride (hBN).
View Article and Find Full Text PDFTopological boundary modes in electronic and classical-wave systems exhibit fascinating properties. In photonics, topological nature of boundary modes can make them robust and endows them with an additional internal structure-pseudo-spins. Here, we introduce heterogeneous boundary modes, which are based on mixing two of the most widely used topological photonics platforms-the pseudo-spin-Hall-like and valley-Hall photonic topological insulators.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2023
Aging of the relaxors and PbMg1/3Nb2/3Oin particular was extensively studied in last two decades. Most of the results were related to the low temperature glass-like region. No systematic data around the freezing temperatures were reported.
View Article and Find Full Text PDFTopological phases of matter have been attracting significant attention across diverse fields, from inherently quantum systems to classical photonic and acoustic metamaterials. In photonics, topological phases offer resilience and bring novel opportunities to control light with pseudo-spins. However, topological photonic systems can suffer from limitations, such as breakdown of topological properties due to their symmetry-protected origin and radiative leakage.
View Article and Find Full Text PDFThe Dirac-like dispersion in photonic systems makes it possible to mimic the dispersion of relativistic spin-1/2 particles, which led to the development of the concept of photonic topological insulators. Despite recent demonstrations of various topological photonic phases, the full potential offered by Dirac photonic systems, specifically their ability to emulate the spin degree of freedom-referred to as pseudo-spin-beyond topological boundary modes has remained underexplored. Here we demonstrate that photonic Dirac metasurfaces with smooth one-dimensional trapping gauge potentials serve as effective waveguides with modes carrying pseudo-spin.
View Article and Find Full Text PDF