The extrathoracic oral airway is not only a major mechanical barrier for pharmaceutical aerosols to reach the lung but also a major source of variability in lung deposition. Using computational fluid dynamics, deposition of 1−30 µm particles was predicted in 11 CT-based models of the oral airways of adults. Simulations were performed for mouth breathing during both inspiration and expiration at two steady-state flow rates representative of resting/nebulizer use (18 L/min) and of dry powder inhaler (DPI) use (45 L/min).
View Article and Find Full Text PDFPredictive dosimetry models play an important role in assessing health effect of inhaled particulate matter and in optimizing delivery of inhaled pharmaceutical aerosols. In this study, the commonly used 1D Multiple-Path Particle Dosimetry model (MPPD) was improved by including a mechanistically based model component for alveolar mixing of particles and by extending the model capabilities to account for multiple breaths of aerosol intake. These modifications increased the retained fraction of particles and consequently particle deposition predictions in the deep lung during tidal breathing.
View Article and Find Full Text PDFThe recent COVID-19 pandemic has propelled the field of aerosol science to the forefront, particularly the central role of virus-laden respiratory droplets and aerosols. The pandemic has also highlighted the critical need, and value for, (that inform policymakers to develop public health responses) (that inform the public and health care providers how individuals develop respiratory infections). Here, we review existing data and models of generation of respiratory droplets and aerosols, their exhalation and inhalation, and the fate of infectious droplet transport and deposition throughout the respiratory tract.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2020
Purpose: Virtual surgery planning based on computational fluid dynamics (CFD) simulations of nasal airflow has the potential to improve surgical outcomes for patients with nasal airway obstruction (NAO). Virtual surgery planning requires normative ranges of airflow variables, but few studies to date have quantified inter-individual variability of nasal airflow among healthy subjects. This study reports CFD simulations of nasal airflow in 47 healthy adults.
View Article and Find Full Text PDFBackground: Despite advances in medicine and expenditures associated in treatment of nasal airway obstruction, 25-50% of patients undergoing nasal surgeries complain of persistent obstructive symptoms. Our objective is to develop a "stepwise virtual surgery" method that optimizes surgical outcomes for treatment of nasal airway obstruction.
Methods: Pre-surgery radiographic images of two subjects with nasal airway obstruction were imported into Mimics imaging software package for three-dimension reconstruction of the airway.