Publications by authors named "A A Skripchenko"

Background: Pathogen reduction (PR) may be used as an alternative to gamma or x-ray irradiation (I) to prevent transfusion associated graft versus host disease (TA-GVHD) if the pathogen reduction technology has been shown to inactivate residual lymphocytes. However, as I is considered the gold standard for reducing the risk of TA-GVHD, some centers continue to perform I in addition to PR. This study investigated the effect of concurrent pathogen reduction and irradiation (PR/I) on the biochemical characteristics of apheresis platelets at day 1, 5, and 7 of storage at room temperature.

View Article and Find Full Text PDF

Platelets for transfusion are stored at room temperature (20-24°C) up to 7 days but decline in biochemical and morphological parameters during storage and can support bacterial proliferation. This decline is reduced with p38MAPK inhibitor, VX-702. Storage of platelets in the cold (4-6°C) can reduce bacterial proliferation but platelets get activated and have reduced circulation when transfused.

View Article and Find Full Text PDF

Background: Initial evaluation of new platelet (PLT) products for transfusion includes a clinical study to determine in vivo recovery and survival of autologous radiolabeled PLTs in healthy volunteers. These studies are expensive and do not always produce the desired results. A validated animal model of human PLTs in vivo survival and recovery used pre-clinically could reduce the risk of failing to advance product development.

View Article and Find Full Text PDF

Arrhythmogenic dysplasia of the right ventricle is a rare pathology of the myocardium, the diagnosis of which is difficult. Isolated myocardial infarction of the right ventricle occurs and is diagnosed extremely rarely. In this article we describe a case of arrhythmogenic right ventricular dysplasia, complicated by transmural infarction of the anterolateral wall of the right ventricle, myocardial rupture, and cardiac tamponade.

View Article and Find Full Text PDF

Background: Room temperature (RT) storage of platelets (PLTs) can support bacterial proliferation in contaminated units, which can lead to transfusion-transmitted septic reactions. Cold temperature storage of PLTs could reduce bacterial proliferation but cold exposure produces activation-like changes in PLTs and leads to their rapid clearance from circulation. Cold-induced changes are reversible by warming and periodic rewarming during cold storage (temperature cycling [TC]) has been proposed to alleviate cold-induced reduction in PLT circulation.

View Article and Find Full Text PDF