Until recently, the methylotrophic yeast was not considered as a potential producer of biofuels, particularly of ethanol from lignocellulosic hydrolysates. The first work published 10 years ago reveals the ability of thermotolerant methylotrophic yeast Hansenula polymorpha to ferment xylose--one of the main sugars of lignocellulosic hydrolysates, which has made these yeast promising organism for high temperature alcoholic fermentation. Such feature of the H.
View Article and Find Full Text PDFPeroxisomes contain oxidases generating hydrogen peroxide, and catalase degrading this toxic compound. Another characteristic function of each eukaryotic peroxisome, from yeast to man, is fatty acid beta-oxidation. However, in peroxisomes a variety of other metabolic pathways are located.
View Article and Find Full Text PDFRecent data on the synthesis and hydrolysis of flavin nucleotides in yeast and bacteria and the regulation of this process are summarized. Specific examples are provided and the prospects of the use of genetically modified microorganisms for the industrial manufacturing of flavin mononucleotide and flavin dinucleotide are considered.
View Article and Find Full Text PDFL-Lactate cytochrome c oxidoreductase (flavocytochrome b2, FC b2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker's yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b2 producers with overexpression of the H. polymorpha CYB2 gene, encoding FC b2.
View Article and Find Full Text PDF