To describe the way complexity emerges in seemingly simple systems of nature, requires one to attend to two principal questions: how complex patterns appear spontaneously and why a single system can accommodate their inexhaustible variety. It is commonly assumed the pattern formation phenomenon is related to the competition of several types of interactions with disparate length scales. These multi-scale interactions also lead to frustration within the system, resulting in the existence of a manifold of configurations-patterns with qualitatively distinct morphologies.
View Article and Find Full Text PDFUsing the tight-binding Bogoliubov-de Gennes formalism, we describe the influence of the surface potential on the superconducting critical temperature at the surface. Surface details are taken into account within the framework of the self-consistent Lang-Kohn effective potential. The regimes of strong and weak coupling of superconducting correlations are considered.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2022
The interference of multiple condensates coexisting in one system may lead to unconventional coherent behavior. This is expected when the spatial lengths of the condensates are essentially different. Traditionally, the characteristic spatial length of a superconducting condensate is associated with the gap function.
View Article and Find Full Text PDFBiScO compound was obtained in the form of dense ceramic with a perovskite-type structure, and its complex characterization was determined for the first time. The corresponding synthesis procedure is described in detail. It is demonstrated that the temperature region of the phase stability at atmospheric pressure lies at < 700 °C (973 K).
View Article and Find Full Text PDF