Publications by authors named "A A Sewani"

Catheter based procedures are typically guided by X-Ray, which suffers from low soft tissue contrast and only provides 2D projection images of a 3D volume. Intravascular ultrasound (IVUS) can serve as a complementary imaging technique. Forward viewing catheters are useful for visualizing obstructions along the path of the catheter.

View Article and Find Full Text PDF

Peripheral arterial diseases are commonly managed with endovascular procedures, which often face limitations in device control and visualization under X-ray fluoroscopy guidance. In response, we developed the CathCam, an angioscope integrated into an expandable cable-driven parallel mechanism to enhance real-time visualization, precise device positioning and catheter support for successful plaque crossing. The primary objective of this study was to assess and compare the performance of the novel CathCam with respect to conventional catheters and the CathPilot (i.

View Article and Find Full Text PDF

Objectives: Peripheral endovascular revascularization procedures often fail due to technical limitations of guidewire support, steering, and visualization. The novel CathPilot catheter aims to address these challenges. This study assesses the safety and feasibility of the CathPilot and compares its performance to conventional catheters for peripheral vascular interventions.

View Article and Find Full Text PDF

Purpose: Accurate and reliable catheter navigation is important in formation of adequate lesions during radiofrequency cardiac catheter ablation. To inform future device design efforts and to characterize the limitations of conventional devices, the focus of this study is to assess and quantify the mechanical performance of manual ablation catheters for pulmonary vein isolation procedures within a phantom heart model.

Methods: We measured three important metrics: accuracy of catheter tip navigation to target anatomical landmarks at the pulmonary veins (PVs), orientation of the catheter relative to the tissue at the targets, and the delivered force values and their stability and variations at those targets.

View Article and Find Full Text PDF

Conventional catheter-based interventions for treating peripheral artery disease suffer high failure and complication rates. The mechanical interactions with the anatomy constrain catheter controllability, while their length and flexibility limit their pushability. Also, the 2D X-ray fluoroscopy guiding these procedures fails to provide sufficient feedback about the device location relative to the anatomy.

View Article and Find Full Text PDF