Publications by authors named "A A Scaife"

We use Coupled Model Intercomparison Project Phase 6 (CMIP6) coupled and Atmospheric Model Intercomparison Project (AMIP) climate models, dynamical analyses, and observations to investigate interactions between summer Arctic sea ice concentration (SIC) variations and the Summer North Atlantic Oscillation (SNAO). Observations suggest that SIC-SNAO relationships mainly come from the East Siberian to Arctic Canada (ESAC) region where a weak atmospheric jet stream exists in summer. Twelve CMIP6 models with the most realistic atmospheric climatologies over the North Atlantic and Europe agree well with reanalyses on relationships between SIC and Northern Hemisphere atmospheric circulation.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights a 1-year delay in how the El Niño-Southern Oscillation (ENSO) affects extratropical climates, revealing that this response connects with the Arctic Oscillation and is particularly pronounced in the North Atlantic, resembling the North Atlantic Oscillation (NAO).
  • Unexpectedly, the delayed effects are found to be as strong as the more widely recognized immediate winter impacts, but they occur with opposite signs: a positive NAO follows El Niño and a negative NAO follows La Niña after one year.
  • The findings suggest that these lagged responses are not due to overlapping ENSO cycles but are instead driven by changes in atmospheric angular momentum, which could improve our understanding of climate patterns and enhance climate prediction accuracy.
View Article and Find Full Text PDF

Skilful predictions of near-term climate extremes are key to a resilient society. However, standard methods of analysing seasonal forecasts are not optimised to identify the rarer and most impactful extremes. For example, standard tercile probability maps, used in real-time regional climate outlooks, failed to convey the extreme magnitude of summer 2022 Pakistan rainfall that was, in fact, widely predicted by seasonal forecasts.

View Article and Find Full Text PDF

Myzus persicae (Sulzer, Hemiptera: Aphididae) is a major global crop pest; it is the primary aphid vector for many damaging viruses and has developed resistance to most insecticides. In temperate regions, the risk of widespread crop infection and yield loss is heightened following warm winters, which encourage rapid population growth and early flight. Estimates of the frequency and magnitude of warm winters are, therefore, helpful for understanding and managing this risk.

View Article and Find Full Text PDF