Publications by authors named "A A Russkikh"

Article Synopsis
  • Researchers developed a new type of organic phototransistor by altering the chemical composition of a co-polymer to achieve better charge transport and crystallinity.
  • The switch from sulfur to oxygen in the polymer's structure increases electron affinity and allows for better ambipolar (both positive and negative charge transport) performance.
  • The resulting device shows impressive sensitivity and can function effectively as a near-infrared detector with high responsiveness and gain enhancements when exposed to light.*
View Article and Find Full Text PDF

The reaction between dithiomalondianilide (N,N'-diphenyldithiomalondiamide) and alkyl 3-aryl-2-cyanoacrylates in the presence of morpholine in the air atmosphere leads to the formation of alkyl 6-amino-4-aryl-7-phenyl-3-(phenylimino)-4,7-dihydro-3H-[1,2]dithiolo[3,4-b]- pyridine-5-carboxylates in 37-72% yields. The same compounds were prepared in 23-65% yields by ternary condensation of aromatic aldehydes, ethyl(methyl) cyanoacetate and dithiomalondianilide. The reaction mechanism is discussed.

View Article and Find Full Text PDF

The Michael addition reaction between dithiomalondianilide (N,N'-diphenyldithiomalondiamide) and arylmethylidene Meldrum's acids, accompanied by subsequent heterocyclization, was investigated along with factors affecting the mixture composition of the obtained products. The plausible mechanism includes the formation of stable Michael adducts which, under the studied conditions, undergo further transformations to yield corresponding N-methylmorpholinium 4-aryl-6-oxo-3-(N-phenylthio-carbamoyl)-1,4,5,6-tetrahydropyridin-2-thiolates and their oxidation derivatives, 4,5-dihydro-3H-[1,2]dithiolo[3,4-b]pyridin-6(7H)-ones. The structure of one such product, N-methylmorpholinium 2,2-dimethyl-5-(1-(2-nitrophenyl)-3-(phenylamino)-2-(N-phenylthiocarbamoyl)-3-thioxopropyl)-4-oxo-4H-1,3-dioxin-6-olate, was confirmed via X-ray crystallography.

View Article and Find Full Text PDF

The production of carbon-neutral fuels from CO presents an avenue for causing an appreciable effect in terms of volume toward the mitigation of global carbon emissions. To that end, the production of isoparaffin-rich fuels is highly desirable. Here, we demonstrate the potential of a multifunctional catalyst combination, consisting of a methanol producer (InCo) and a Zn-modified zeolite beta, which produces a mostly isoparaffinic hydrocarbon mixture from CO (up to ∼85% isoparaffin selectivity among hydrocarbons) at a CO conversion of >15%.

View Article and Find Full Text PDF

Treatment outcomes for Multidrug/Rifampicin-Resistant Tuberculosis (MDR/RR-TB) and Extensively Drug-Resistant Tuberculosis (XDR-TB) remain poor across the globe and in the Russian Federation. Treatment of XDR-TB is challenging for programmes and patients often resulting in low success rates and onward transmission of drug-resistant strains. Analysis of factors affecting culture conversion rate among XDR-TB patients may serve as a basis for optimization of treatment regimens.

View Article and Find Full Text PDF