An approach aimed at increasing the radiative efficiency in heterostructures operating in a single vertical mode at 1060 nm has been studied. Two types of heterostructures-the STJH (single tunnel junction heterostructure) and DTJH (double tunnel junction heterostructure)-have been developed to obtain the operation of a single waveguide mode of the first and second order, respectively. A multiple increase in the injection efficiency is realized by using tunnel junctions (TJs) embedded in the wide-gap barriers and placed between the active regions.
View Article and Find Full Text PDFAn external cavity in Littrow configuration based on a reflective diffraction grating and a high-power semiconductor laser based on an asymmetric heterostructure with low optical loss was studied. A continuous-wave optical output power of 13 W with a linewidth of 0.15 nm was achieved for an external-cavity laser.
View Article and Find Full Text PDFIt is shown that the use of low-voltage GaAs/AlGaAs thyristors as high-speed and high-current switches in vertical stacks with semiconductor lasers ensures the efficient generation of high-power ns-duration laser pulses. The lasing and current dynamics in vertical stacks based on laser diode mini bar emitting at 1060 nm and a single as well as a double thyristor switch is studied. The possibility is demonstrated that a laser diode mini bar (with 3 laser emitters) together with a single thyristor switch can generate laser pulses with a peak power of 6 W with a duration of 950 ps and a peak current of 12 A for an operating voltage of 28 V.
View Article and Find Full Text PDFLasers-thyristors with a narrow (20 μm) mesa stripe contact have been studied. It was shown that the laser peak power reaches a value of 2.5 W in the long-pulse mode at a pulse width of 13 ns.
View Article and Find Full Text PDFScanning near-field optical microscopy was applied to study, with sub-wavelength spatial resolution, the near- and the far-field distributions of propagating modes from a high-power laser diode. Simple modeling was also performed and compared with experimental results. The simulated distributions were consistent with the experiment and permitted clarification of the configuration of the transverse modes of the laser.
View Article and Find Full Text PDF