Publications by authors named "A A Podlesnyak"

The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3  K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.

View Article and Find Full Text PDF

The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.

View Article and Find Full Text PDF

In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research shows that cobaltites may serve as a valuable avenue for studying Kitaev physics in honeycomb structures and the Ising model in weakly linked chains.
  • The study investigates the magnetic properties of SrCoGeO using neutron scattering, ab initio methods, and linear spin-wave theory to propose a modified Kitaev model for the interactions in this material.
  • Findings indicate that external magnetic fields can shift the material's magnetic ordering and suggest modified pyroxenes could offer new insights into Kitaev physics.
View Article and Find Full Text PDF

The extraordinary properties of the Kitaev model have motivated an intense search for new physics in materials that combine geometrical and bond frustration. In this Letter, we employ inelastic neutron scattering, spin wave theory, and exact diagonalization to study the spin dynamics in the perfect triangular-lattice antiferromagnet (TLAF) CsCeSe_{2}. This material orders into a stripe phase, which is demonstrated to arise as a consequence of the off-diagonal bond-dependent terms in the spin Hamiltonian.

View Article and Find Full Text PDF