MicroRNAs play a significant role in the development of cancers, including lung cancer. A recent study revealed that smoking, a key risk factor for lung cancer, increased the levels of hsa-mir-301a in the tumor tissues of patients with lung squamous cell carcinoma (LUSC). The aim of the current study is to investigate the mechanism by which tobacco smoke increases hsa-mir-301a levels in LUSC tumor tissues using bioinformatics analysis.
View Article and Find Full Text PDFSmoking is an established risk factor for a variety of malignant tumors, the most well-known of which is lung cancer. Various molecular interactions are known to link tobacco smoke exposure to lung cancer, but new data are still emerging on the effects of smoking on lung cancer development, progression, and tumor response to therapy. In this study, we reveal in further detail the previously established association between smoking and hsa-mir-301a activity in lung squamous cell carcinoma, LUSC.
View Article and Find Full Text PDFIRF1 is a transcription factor well known for its role in IFN signaling. Although IRF1 was initially identified for its involvement in inflammatory processes, there is now evidence that it provides a function in carcinogenesis as well. IRF1 has been shown to affect several important antitumor mechanisms, such as induction of apoptosis, cell cycle arrest, remodeling of tumor immune microenvironment, suppression of telomerase activity, suppression of angiogenesis and others.
View Article and Find Full Text PDFThe electrical resistivity and the Hall effect of topological insulator BiTe and BiSe single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density functional approach, taking into account spin-orbit coupling and crystal structure data for temperatures of 5, 50 and 300 K.
View Article and Find Full Text PDFActivation of the constitutive androstane receptor (CAR, NR1I3) by chemical compounds induces liver hyperplasia in rodents. 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a mouse CAR agonist, is most often used to study chemically induced liver hyperplasia and hepatocyte proliferation in vivo. TCPOBOP is a potent murine liver chemical mitogen, which induces rapid liver hyperplasia in mice independently of liver injury.
View Article and Find Full Text PDF