Publications by authors named "A A Patchett"

Sensitive screening of eukaryotic communities in aquaculture for research and management is limited by the availability of technologies that can detect invading pathogens in an unbiased manner. Amplicon sequencing of 18S ribosomal DNA (rDNA) provides a potential pan-diagnostic test to overcome these biases; however, this technique is limited by a swamping effect of host DNA on low abundance parasite DNA. In this study, we have adapted a host 18S rDNA blocking assay to amplify eukaryotic DNA from salmonid tissue for amplicon sequencing.

View Article and Find Full Text PDF

The Tasmanian devil (Sarcophilus harrisii) is endangered due to the spread of Devil Facial Tumour Disease (DFTD), a contagious cancer with no current treatment options. Here we test whether seven recently characterized Tasmanian devil cathelicidins are involved in cancer regulation. We measured DFTD cell viability in vitro following incubation with each of the seven peptides and describe the effect of each on gene expression in treated cells.

View Article and Find Full Text PDF

Devil Facial Tumour Disease (DFTD) is an emerging infectious disease that provides an excellent example of how diagnostic techniques improve as disease-specific knowledge is generated. DFTD manifests as tumour masses on the faces of Tasmanian devils, first noticed in 1996. As DFTD became more prevalent among devils, karyotyping of the lesions and their devil hosts demonstrated that DFTD was a transmissible cancer.

View Article and Find Full Text PDF

Purpose: Downregulation of MHC class I (MHC-I) is a common immune evasion strategy of many cancers. Similarly, two allogeneic clonal transmissible cancers have killed thousands of wild Tasmanian devils (Sarcophilus harrisii) and also modulate MHC-I expression to evade anti-cancer and allograft responses. IFNG treatment restores MHC-I expression on devil facial tumor (DFT) cells but is insufficient to control tumor growth.

View Article and Find Full Text PDF

infected with the fungal endophyte var. have specific, endophyte strain-dependent, chemical phenotypes in their above-ground tissues. Differences in these chemical phenotypes have been largely associated with classes of fungal-derived alkaloids which protect the plant against many insect pests.

View Article and Find Full Text PDF