Long-chain free fatty acids (FFAs) play an important role in several physiological and pathological processes such as lipid fusion, adjustments of membrane permeability and fluidity, and the regulation of enzyme and protein activities. FFA-facilitated membrane proton transport (flip-flop) and FFA-dependent proton transport by membrane proteins (e.g.
View Article and Find Full Text PDFMembrane transporters are involved in enormous number of physiological and pathological processes. Under oxidative stress they become targets for reactive oxygen species and its derivatives which cause protein damage and/or influence protein function(s). The molecular mechanisms of this interaction are poorly understood.
View Article and Find Full Text PDFTo gain insight into mechanisms of photodynamic modification of biological membranes, we studied an impact of visible light in combination with a photosensitizer on translocation of various substances across artificial (vesicular and planar) bilayer lipid membranes (BLMs). Along with induction of carboxyfluorescein leakage from liposomes, pronounced stimulation of lipid flip-flop between the two monolayers was found after photosensitization, both processes being prevented by the singlet oxygen quencher sodium azide. On the contrary, no enhancement of potassium chloride efflux from liposomes was detected by conductometry under these conditions.
View Article and Find Full Text PDFPhotosensitized damage to liposome membranes was studied by using different dye-leakage assays based on fluorescence dequenching of a series of dyes upon their release from liposomes. Irradiation of liposomes with red light in the presence of a photosensitizer, trisulfonated aluminum phthalocyanine (AlPcS(3)), resulted in the pronounced leakage of carboxyfluorescein, but rather weak leakage of sulforhodamine B and almost negligible leakage of calcein from the corresponding dye-loaded liposomes. The same series of selectivity of liposome leakage was obtained with chlorin e6 that appeared to be more potent than AlPcS(3) in bringing about the photosensitized liposome leakage.
View Article and Find Full Text PDFThe effect of ionic substituents in zinc and aluminum phthalocyanine molecules and of membrane surface charge on the interaction of dyes with artificial membranes and enterobacterial cells, as well as on photosensitization efficiency was studied. It has been shown that increasing the number of positively charged substituents enhances the extent of phthalocyanine binding to Escherichia coli cells. This, along with the high quantum yield of singlet oxygen generation, determines efficient photodynamic inactivation of Gram-negative bacteria by zinc and aluminum octacationic phthalocyanines.
View Article and Find Full Text PDF