In traditional neural network designs, a multilayer perceptron (MLP) is typically employed as a classification block following the feature extraction stage. However, the Kolmogorov-Arnold Network (KAN) presents a promising alternative to MLP, offering the potential to enhance prediction accuracy. In this paper, we studied KAN-based networks for pixel-wise classification of hyperspectral images.
View Article and Find Full Text PDFArtificial intelligence (AI) is transforming diffractive optics development through its advanced capabilities in design optimization, pattern generation, fabrication enhancement, performance forecasting, and customization. Utilizing AI algorithms like machine learning, generative models, and transformers, researchers can analyze extensive datasets to refine the design of diffractive optical elements (DOEs) tailored to specific applications and performance requirements. AI-driven pattern generation methods enable the creation of intricate and efficient optical structures that manipulate light with exceptional precision.
View Article and Find Full Text PDFThis paper presents findings from a spaceborne Earth observation experiment utilizing a novel, ultra-compact hyperspectral imaging camera aboard a 3U CubeSat. Leveraging the Offner optical scheme, the camera's hyperspectrometer captures hyperspectral images of terrestrial regions with a 200 m spatial resolution and 12 nanometer spectral resolution across a 400 to 1000 nanometer wavelength range, covering 150 channels in the visible and near-infrared spectrums. The hyperspectrometer is specifically designed for deployment on a 3U CubeSat nanosatellite platform, featuring a robust all-metal cylindrical body of the hyperspectrometer, and a coaxial arrangement of the optical elements ensures optimal compactness and vibration stability.
View Article and Find Full Text PDF