Publications by authors named "A A Nasyrov"

Tunable self-assembly driven by external electric or magnetic fields is of significant interest in modern soft matter physics. While extensively studied in two-dimensional systems, it remains insufficiently explored in three-dimensional systems. In this study, we investigated the formation of vertical strings from an initial monolayer system of particles deposited on a horizontal substrate under the influence of an external magnetic field using experiments, computer simulations, and theoretical frameworks.

View Article and Find Full Text PDF

Calculations of pair correlations in fluids usually require resource-intensive simulations or integral equations, while existing simple approximations lack accuracy. Here, we show that the pair correlation function for monolayer fluid-like systems can be decomposed into correlation peaks defined using Voronoi cells. Being properly normalized, these peaks exhibit a universal form, weak temperature dependence, and resemble those of an ideal gas, except for the first peak.

View Article and Find Full Text PDF

Astrocytes are glycolytically active cells in the central nervous system playing a crucial role in various brain processes from homeostasis to neurotransmission. Astrocytes possess a complex branched morphology, frequently examined by fluorescent microscopy. However, staining and fixation may impact the properties of astrocytes, thereby affecting the accuracy of the experimental data of astrocytes dynamics and morphology.

View Article and Find Full Text PDF

Swarming behavior in systems of self-propelled particles, whether biological or artificial, has received increased attention in recent years. Here, we show that even a small number of particles with anomalous behavior can change dramatically collective dynamics of the swarming system and can impose unusual behavior and transitions between dynamic states. Our results pave the way to practical approaches and concepts of multiagent dynamics in groups of flocking animals: birds, insects, and fish, i.

View Article and Find Full Text PDF

The effects of inertia in active matter and motility-induced phase separation (MIPS) have attracted growing interest but still remain poorly studied. We studied MIPS behavior in the Langevin dynamics across a broad range of particle activity and damping rate values with molecular dynamic simulations. Here we show that the MIPS stability region across particle activity values consists of several domains separated by discontinuous or sharp changes in susceptibility of mean kinetic energy.

View Article and Find Full Text PDF