Publications by authors named "A A Maklakov"

The developmental theory of ageing proposes that age-specific decline in the force of natural selection results in suboptimal levels of gene expression in adulthood, leading to functional senescence. This theory explicitly predicts that optimising gene expression in adulthood can ameliorate functional senescence and improve fitness. Reduced insulin/IGF-1 signalling (rIIS) extends the reproductive lifespan of Caenorhabditis elegans at the cost of reduced reproduction.

View Article and Find Full Text PDF

Germline regulates the expression of life-history traits and mediates the trade-off between reproduction and somatic maintenance. However, germline maintenance in itself can be costly, and the costs can vary between the sexes depending on the number of gametes produced across the lifetime. We tested this directly by germline ablation using glp-1 RNA interference (RNAi) in a dioecious nematode Caenorhabditis remanei.

View Article and Find Full Text PDF

Reduced insulin/IGF-1 signalling (rIIS) improves survival across diverse taxa and there is a growing interest in its role in regulating immune function. Whilst rIIS can improve anti-bacterial resistance, the consequences for anti-viral immunity are yet to be systematically examined. Here, we show that rIIS in adult Caenorhabditis elegans increases the expression of key genes in two different anti-viral immunity pathways, whilst reducing viral load in old age, increasing survival and reducing rate-of-senescence under infection by naturally occurring positive-sense single-stranded RNA Orsay virus.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have long been intrigued by the questions of why and how we age, but their approaches are often disjointed, hindering a clear understanding of the aging process.
  • The authors argue that this gap in knowledge is largely due to unclear evolutionary theories related to aging, specifically the disposable soma theory (DST) and the developmental theory of aging (DTA).
  • They propose a new hierarchical model that connects genes to vital rates, allowing for a reevaluation of DST and DTA in relation to evolution-based genetic theories of aging, ultimately aiming to create a unified framework for testing aging hypotheses shaped by natural selection.
View Article and Find Full Text PDF

The effect of parental age on germline mutation rate across generations is not fully understood. While some studies report a positive linear relationship of mutation rate with increasing age, others suggest that mutation rate varies with age but not in a linear fashion. We investigated the effect of parental age on germline mutations by generating replicated mutation accumulation lines in at three parental ages ("Young T1" [Day 1], "Peak T2" [Day 2], and "Old T5" [Day 5] parents).

View Article and Find Full Text PDF