A new type of fluorogenic and fluorochromic probe based on the reduction of weakly fluorescent 4-azido-6-(4-cyanophenyl)cinnoline to the corresponding fluorescent cinnoline-4-amine was developed. We found that the fluorescence of 6-(4-cyanophenyl)cinnoline-4-amine is strongly affected by the nature of the solvent. The fluorogenic effect for the amine was detected in polar solvents with the strongest fluorescence increase in water.
View Article and Find Full Text PDFTo find promising analogues of naturally occurring enediyne antibiotics with a sufficient reactivity in the Bergman cyclization and moderately stable under isolation and storage, a scale of relative enediynes reactivity was created on the basis of calculated free activation energies for the Bergman cyclization within 12 known and new benozothiophene, benzene, and cinnoline annulated 9- and 10-membered enediynes. To verify the predicted reactivity/stability balance, three new carbocyclic enediynes fused to a benzothiophene core bearing 3,4,5-trimethoxybenzene, fluoroisopropyl, and isopropenyl substituents were synthesized using the Nicholas-type macrocyclization. It was confirmed that annulation of a 3,4,5-trimethoxybenzene moiety to a 10-membered enediyne macrocycle imparts high reactivity to an enediyne while also conferring instability under ambient temperature.
View Article and Find Full Text PDFThe feasibility of ring-closing metathesis (RCM) as a synthetic entry to 10- and 11-membered dienediynes fused to a benzothiophene core was explored by experimental and theoretical investigations. An established sequence of iodocyclization of o-(buta-1,3-diynyl)thioanisoles followed by Sonogashira coupling to form diethynylbenzothiophenes was used to synthesize terminal benzothiophene-fused enediyne diolefins as substrates for RCM. Encountering an unexpected lack of reactivity of these substrates under standard RCM conditions, we applied DFT calculations to reveal that the underlying cause was a positive change in Gibbs free energy.
View Article and Find Full Text PDFBase-promoted transformation of 4-(3-nitroaryl)-1,2,3-selenadiazoles via intermediate formation of eneselenolates followed by 5-exo-trig cyclization is reported. The regiochemistry of the intramolecular cyclization is condition-dependent. In the presence of an oxidant, the oxidative nucleophilic substitution of the hydrogen (ONSH, S(N)Ar(H)) pathway, by oxidative aromatization of the rapidly formed σ(H)-adduct, takes place.
View Article and Find Full Text PDF