Diffraction-before-destruction imaging with ultrashort X-ray pulses can visualize non-equilibrium processes, such as chemical reactions, with sub-femtosecond precision in the native environment. Here, a nanospecimen diffracts a single X-ray flash before it disintegrates. The sample structure can be reconstructed from the coherent diffraction image (CDI).
View Article and Find Full Text PDFKnowledge of x-ray free electron lasers' (XFELs) pulse characteristics delivered to a sample is crucial for ensuring high-quality x-rays for scientific experiments. XFELs' self-amplified spontaneous emission process causes spatial and spectral variations in x-ray pulses entering a sample, which leads to measurement uncertainties for experiments relying on multiple XFEL pulses. Accurate in-situ measurements of x-ray wavefront and energy spectrum incident upon a sample poses challenges.
View Article and Find Full Text PDFFemtosecond pump-probe spectroscopy using ultrafast optical and infrared pulses has become an essential tool to discover and understand complex electronic and structural dynamics in solvated molecular, biological, and material systems. Here we report the experimental realization of an ultrafast two-color X-ray pump X-ray probe transient absorption experiment performed in solution. A 10 fs X-ray pump pulse creates a localized excitation by removing a 1s electron from an Fe atom in solvated ferro- and ferricyanide complexes.
View Article and Find Full Text PDFWe present a method to accurately control the photon energies for hard X-ray Self-seeding schemes with a single crystal monochromator in transmissive geometry. The energy calibration is performed by measuring which pairs of the machine pitch and yaw angles for different crystallographic planes reflect the X-ray at the same wavelength. The free parameters of an analytical formula for the self-seeding energies are determined by fitting the observed intersections and the normalized derivative with respect to the pitch and yaw angles in the observed intersections.
View Article and Find Full Text PDFThe concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxide diatomic molecule. We employ a local resonant x-ray pump at the oxygen atom and probe the chemical shifts of the carbon core-electron binding energy.
View Article and Find Full Text PDF