Publications by authors named "A A Lumpov"

Technetium(I) 2 + 1 tricarbonyl complexes with a combination of ,-bidentate ligands (2,2'-bipyridine, bipy; 1,10-phenanthroline, phen) and ethyl isocyanoacetate were prepared and characterized by NMR, IR, UV/visible, and luminescence spectroscopies and by high-performance liquid chromatography (HPLC). The crystal structures of [Tc(CO)(bipy)(CNCHCOOEt)](ClO) (in the form of a solvate with 0.5CHCl) and [Tc(CO)(phen)(CNCHCOOEt)](ClO) (in the form of an adduct with an outer-sphere phen molecule) were determined by single-crystal X-ray diffraction.

View Article and Find Full Text PDF

The quantification of plutonium in technological streams during spent nuclear fuel (SNF) reprocessing is an important practical task that has to be solved to ensure the safety of the process. Currently applied methods are tedious, time-consuming and can hardly be implemented in on-line mode. A fast and simple quantitative plutonium (IV) analysis using a potentiometric sensor array based on extracting agents is suggested in this study.

View Article and Find Full Text PDF

Technetium pentacarbonyl fluoride [TcF(CO)5] was prepared for the first time by reaction of [TcI(CO)5] with solid AgF in a dichloromethane solution at -23 °C. Low temperature crystallization of the resulting compound in a glass vial yielded an unusual complex [Tc(CO)3(OH)0.49F0.

View Article and Find Full Text PDF

Technetium(I) and rhenium(I) pentacarbonyl complexes with ethyl 2-isocyanoacetate and methyl 11-isocyanoundecanoate, [M(CO)5(CNCH2COOEt)]ClO4 (M = Tc (1) and Re (2)) and [M(CO)5(CN(CH2)10COOMe)]ClO4 (M = Tc (3) and Re (4)), were prepared and characterized by IR, (1)H NMR, and (13)C{(1)H} NMR spectroscopy. The crystal structures of 1 and 2 were determined using single-crystal X-ray diffraction. The kinetics of thermal decarbonylation of technetium complexes 1 and 3 in ethylene glycol was studied by IR spectroscopy.

View Article and Find Full Text PDF

The experimental design of mixtures for multivariate calibration is introduced. The idea of this design is based on uniform distribution of experimental points in a concentration hypercube. Unlike the already reported uniform designs this one is pretty simple and not computationally demanding.

View Article and Find Full Text PDF