Background & Aims: Cholangiocarcinoma (CCA) is a dreaded complication of primary sclerosing cholangitis (PSC) that is difficult to diagnose and associated with high mortality. A lack of animal models of CCA recapitulating the hepatic microenvironment of sclerosing cholangitis has hindered the development of novel treatments. Herein, we sought to develop a mouse model of PSC-associated CCA.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2023
Titanium-zirconium dioxide nanostructures loaded by hydroxyapatite were produced on the surface of Ti65Zr alloy. The alloy was treated by anodization with the subsequent immersion in calcium glycerophosphate (CG) solutions. The resulting surfaces present TiO-ZrO nanotubular (TiZr-NT) structures enriched with hydroxyapatite (HAP).
View Article and Find Full Text PDFNanomaterials (Basel)
October 2023
A simple method of synthesis of TiO nanotubes (TiNT) loaded with hydroxyapatite (HAP) is described. Such nanotubes find wide applications in various fields, including biomedicine, solar cells, and drug delivery, due to their bioactivity and potential for osseointegration. The Cp-Ti substrate was anodized at a constant voltage of 40 V, with the subsequent heat treatment at 450 °C.
View Article and Find Full Text PDFAntibody-directed nanotherapeutics (ADNs) represent a promising delivery platform for selective delivery of an encapsulated drug payload to the site of disease that improves the therapeutic index. Although both single-chain Fv (scFv) and Fab antibody fragments have been used for targeting, no platform approach applicable to any target has emerged. scFv can suffer from intrinsic instability, and the Fabs are challenging to use due to native disulfide over-reduction and resulting impurities at the end of the conjugation process.
View Article and Find Full Text PDFTherapeutically targeting receptor tyrosine kinases has proven to be paramount to overcoming chemotherapy resistance in several cancer indications, improving patient outcomes. Insulin-Like Growth Factor Receptor 1 (IGF-1R) and Epidermal Growth Factor Receptor 3 (ErbB3) have been implicated as two such drivers of resistance, however their simultaneous role in ovarian cancer chemotherapy resistance remains poorly elucidated. The aim of this work is to determine the effects of dual IGF-1R/ErbB3 inhibition on ovarian cancer cell signaling, growth, and in vivo efficacy.
View Article and Find Full Text PDF