Micro-computed X-ray tomography (μCT) is a volumetric imaging tool used to quantify the internal structure of materials. μCT imaging with mechanical testing ( μCT) helps visualize strain-induced structural changes and develop structure-property relationships. However, the effects on thermophysical properties of radiation exposure during μCT imaging are seldom addressed, despite potential radiation sensitivity in elastomers.
View Article and Find Full Text PDFThe availability of materials data for impact-mitigating materials has lagged behind applications-based data. For example, data describing on-field helmeted impacts are available, whereas material behaviors for the constituent impact-mitigating materials used in helmet designs lack open datasets. Here, we describe a new FAIR (findable, accessible, interoperable, reusable) data framework with structural and mechanical response data for one example elastic impact protection foam.
View Article and Find Full Text PDFWe introduce a novel method to compute three-dimensional (3D) displacements and both in-plane and out-of-plane tractions on nominally planar transparent materials using standard epifluorescence microscopy. Despite the importance of out-of-plane components to fully understanding cell behavior, epifluorescence images are generally not used for 3D traction force microscopy (TFM) experiments due to limitations in spatial resolution and measuring out-of-plane motion. To extend an epifluorescence-based technique to 3D, we employ a topology-based single particle tracking algorithm to reconstruct high spatial-frequency 3D motion fields from densely seeded single-particle layer images.
View Article and Find Full Text PDFSpatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images.
View Article and Find Full Text PDF