Host-microbiome communication is frequently perturbed in gut pathologies due to microbiome dysbiosis, leading to altered production of bacterial metabolites. Among these, 7α-dehydroxylated bile acids are notably diminished in inflammatory bowel disease patients. Herein, we investigated whether restoration of 7α-dehydroxylated bile acids levels by Clostridium scindens, a human-derived 7α-dehydroxylating bacterium, can reestablish intestinal epithelium homeostasis following colon injury.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2025
Accurate and efficient characterization of nanoparticles (NPs), particularly regarding particle size distribution, is essential for advancing our understanding of their structure-property relationship and facilitating their design for various applications. In this study, we introduce a novel two-stage artificial intelligence (AI)-driven workflow for NP analysis that leverages prompt engineering techniques from state-of-the-art single-stage object detection and large-scale vision transformer (ViT) architectures. This methodology is applied to transmission electron microscopy (TEM) and scanning TEM (STEM) images of heterogeneous catalysts, enabling high-resolution, high-throughput analysis of particle size distributions for supported metal catalyst NPs.
View Article and Find Full Text PDFOver the last 80 years, chlorine (Cl) has been the primary promoter of the ethylene epoxidation reaction valued at ~40 billion USD per year, providing a ~25% selectivity increase over unpromoted silver (Ag) (~55%). Promoters such as cesium, rhenium, and molybdenum each add a few percent of selectivity enhancements to achieve 90% overall, but their codependence on Cl makes optimizing and understanding their function complex. We took a theory-guided, single-atom alloy approach to identify nickel (Ni) as a dopant in Ag that can facilitate selective oxidation by activating molecular oxygen (O) without binding oxygen (O) too strongly.
View Article and Find Full Text PDF