At the selected frequencies from 0.3 to 10 THz we measured the two-dimensional (2D) distributions of fluence and polarization of terahertz (THz) emission from a single-color femtosecond filament. At the majority of frequencies studied, the THz beam has a donut-like shape with azimuthal modulations and radial polarization.
View Article and Find Full Text PDFComparative analysis of different laser regimes of silver nanoparticle generation in water was performed for laser pulsewidth in the range of 300 fs-100 ns. Optical spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and method of dynamic light scattering were used for nanoparticle characterization. Different laser regimes of generation were used with varying pulse duration, pulse energy and scanning velocity.
View Article and Find Full Text PDFIn the present study, copper and silver nanoparticles with a concentration of 20 µg/cm were synthesized using the method of laser-induced forward transfer (LIFT). The antibacterial activity of the nanoparticles was tested against bacterial biofilms that are common in nature, formed by several types of microorganisms (mixed-species bacteria biofilms): , and The Cu nanoparticles showed complete inhibition of the bacteria biofilms used. In the course of the work, a high level of antibacterial activity was demonstrated by nanoparticles.
View Article and Find Full Text PDFThe terahertz (THz) radiation emitted by an air-based femtosecond filament biased by a static electric field is known to have on-axis shape and relatively low frequency spectrum in contrast to the unbiased single-color and two-color schemes. Here, we measure the THz emission of a 15-kV/cm-biased filament in air produced by a 740-nm, 1.8-mJ, 90-fs pulse and demonstrate that a flat-top on-axis THz angular distribution of the emission at 0.
View Article and Find Full Text PDFWe study the angular distribution of different spectral components of the terahertz emission from a single-color laser filament plasma. The opening angle of a terahertz cone is experimentally demonstrated to be proportional to the inverse square root of both plasma channel length and terahertz frequency in the non-linear focusing mode, whereas in the case of linear focusing this dependence breaks down. We also experimentally show that any conclusions of terahertz radiation spectral composition require the angle range from which it is collected to be specified.
View Article and Find Full Text PDF