Nonadiabatic molecular dynamics (NAMD) has become an essential computational technique for studying the photophysical relaxation of molecular systems after light absorption. These phenomena require approximations that go beyond the Born-Oppenheimer approximation, and the accuracy of the results heavily depends on the electronic structure theory employed. Sophisticated electronic methods, however, make these techniques computationally expensive, even for medium size systems.
View Article and Find Full Text PDFOften, chemical reactions are markedly accelerated in microdroplets compared with the corresponding bulk phase. While identifying the precise causative factors remains challenging, the interfacial electric field (IEF) and partial solvation are the two widely proposed factors, accounting for the acceleration or turning on of many reactions in microdroplets. In sharp contrast, this combined computational and experimental study demonstrates that these two critical factors have a negligible effect on promoting a model Diels-Alder (DA) reaction between cyclopentadiene and acrylonitrile in water microdroplets.
View Article and Find Full Text PDFThe molecular structure of water is dynamic, with intermolecular hydrogen (H) bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic or basic conditions, but such details have not been measured. In this work, we developed correlated vibrational spectroscopy, a symmetry-based method that separates interacting from noninteracting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information.
View Article and Find Full Text PDFThe solvent-induced interactions (SIIs) between flexible solutes can be separated into two distinct components: the solvation-induced conformational effect and the joint solvation interaction (JSI). The JSI quantifies the thermodynamic effect of the solvent simultaneously accommodating the solutes, generalizing the typical notion of the hydrophobic interaction. We present a formal definition of the JSI within the framework of the mixture expansion, demonstrate that this definition is equivalent to the SII between rigid solutes, and propose a method, partially connected molecular dynamics, which allows one to compute the interaction with existing free energy algorithms.
View Article and Find Full Text PDFOver the last decade, an increasing body of evidence has emerged, supporting the existence of a metastable liquid-liquid critical point in supercooled water whereby two distinct liquid phases of different densities coexist. Analyzing long molecular dynamics simulations performed using deep neural-network force fields trained to accurate quantum mechanical data, we demonstrate that the low-density liquid phase displays a strong propensity toward spontaneous polarization, as witnessed by large and long-lived collective dipole fluctuations. Our findings suggest that the dynamical stability of the low-density phase, and hence the transition from high-density to low-density liquid, is triggered by a collective process involving an accumulation of rotational angular jumps, which could ignite large dipole fluctuations.
View Article and Find Full Text PDF