In our study, four species of wood-decaying fungi with perennial fruiting bodies were used as the source of biologically active compounds (BACs) - Inonotus obliquus (chaga), Fomitopsis pinicola, Fomes fomentarius, and Ganoderma applanatum. Fungi have a wide range of secondary metabolites but are used much less frequently than plants in both folk and official medicine. Fungotherapy could be considered a promising trend in the development of modern natural therapy.
View Article and Find Full Text PDFMolecular recognition underlies structure formation in supramolecular architectures either in materials or in living systems. Here, we used the nanoscale nontoxic Keplerate-type polyoxometalate (POM) {MoFe} as a template for the recognition of two different guest molecules [tetracycline (TC) and doxorubicin (DOX)] on the textured surface. By means of single crystal X-ray analysis and X-ray photoelectron spectroscopy (XPS), we revised the key features of the {MoFe} structure, showcasing the guest dimolybdenum units' {Mo} location under the hexagonal pores and dynamic exchange of these units during dissolution in an aqueous medium.
View Article and Find Full Text PDFMetabolic changes under stress are often studied in short-term experiments, revealing rapid responses in gene expression, enzyme activity, and the amount of antioxidants. In a long-term experiment, it is possible to identify adaptive changes in both primary and secondary metabolism. In this study, we characterized the physiological state of tobacco plants and assessed the amount and spectrum of phenolic compounds and the lignification of axial organs under excess copper stress in a long-term experiment (40 days).
View Article and Find Full Text PDF'Isabel' grape ( x L. hybrid) is one of the main grape cultivars in Russia and some other countries for processing, due to its vigor, tolerance to the main fungal diseases, high yield and potential for sugar accumulation. The stilbene synthase gene was isolated from the hybrid grape cv.
View Article and Find Full Text PDFA small family of ARGOS genes encodes transmembrane proteins that act as negative regulators of ethylene signaling. Recent studies show that ARGOS genes are involved in the regulation of plant growth under the influence of stress factors. However, the role of ARGOS genes in this process is poorly known.
View Article and Find Full Text PDF