The intrinsic ability of peripheral nerves to regenerate after injury is extremely limited, especially in case of severe injury. This often leads to poor motor function and permanent disability. Existing approaches for the treatment of injured nerves do not provide appropriate conditions to support survival and growth of nerve cells.
View Article and Find Full Text PDFSeveral methods for the stimulation of skin wound repair have been proposed over the last few decades. The most promising among them are gene and stem cell therapy. Our present experiments combined several approaches via the application of human umbilical cord blood mononuclear cells (hUCB-MC) that were transfected with pBud-165-2 plasmid (gene-cell therapy) and direct gene therapy using pBud-165-2 plasmid to enhance healing of full thickness skin wounds in rats.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) are well-known growth factors involved in the regeneration of various tissues and organs, including peripheral nerve system. In the present study, we elucidated the local and systemic effects of plasmid construct рBud-coVEGF165-coFGF2 injected into the epineurium of intact rat sciatic nerve. Results of histological examination of sciatic nerve and multiplex immunoassays of serum showed the absence of immunogenicity and biosafety of plasmid рBud-coVEGF165-coFGF2.
View Article and Find Full Text PDF