Polymers (Basel)
December 2024
Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.
View Article and Find Full Text PDF2D and 3D porous coordination networks (PCNs) as exemplified by metal-organic frameworks, MOFs, have garnered interest for their potential utility as sorbents for molecular separations and storage. The inherent modularity of PCNs has enabled the development of crystal engineering strategies for systematic fine-tuning of pore size and chemistry in families of related PCNs. The same cannot be said about one-dimensional (1D) coordination polymers, CPs, which are understudied with respect to porosity.
View Article and Find Full Text PDFHybrid ultramicroporous materials (HUMs) comprised of combinations of organic and inorganic linker ligands are a leading class of physisorbents for trace separations involving C1, C2 and C3 gases. First generation HUMs are modular in nature since they can be self-assembled from transition metal cations, ditopic linkers and inorganic "pillars", as exemplified by the prototypal variant, SIFSIX-3-Zn (3 = pyrazine, SIFSIX = SiF ). Conversely, HUMs that utilise chelating ligands such as ethylenediamine derivatives are yet to be explored as sorbents.
View Article and Find Full Text PDF