The manipulation of crystallographic defects in 2H-transition metal dichalcogenides (2H-TMDCs), whether pre- or post-synthesis, has garnered significant interest recently, as it holds the promise of tuning the thermal, chemical, and electronic properties of these materials. However, such desirable improvements often come at the cost of deteriorated elastic and inelastic properties, which may lead to serious concerns considering mechanical reliability issues. Therefore, persistent efforts are needed to explore the effects of energetically favorable vacancies on the mechanical properties of 2D TMDCs for an effective tuning of material properties for versatile applications.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2024
Amongst the two-dimensional (2D) transition metal dichalcogenide (TMDC) family, VX (X = S, and Se) are key members for next-generation electronic, spintronic, and energy storage applications. Structural defects may be introduced in these emerging atomically thin materials during synthesis, which can lead to both desirable and detrimental impacts on the physical and chemical properties. Owing to their brittle behaviour, defects may deteriorate the mechanical properties of 2D TMDCs drastically, causing reliability-related issues critical for long-term device-scale applications.
View Article and Find Full Text PDFElectron field emission is a quantum tunneling phenomenon whereby electrons are emitted from a solid surface due to a strong electric field. Graphene and its derivatives are expected to be efficient field emitters due to their unique geometry and electrical properties. So far, electron field emission has only been achieved from the edges of graphene and graphene oxide sheets.
View Article and Find Full Text PDFWe have studied the effect of temperature on the growth of InAs quantum dots (QDs) grown on a strained GaAs layer. The 2.0 nm thick, strained GaAs was obtained by growing it on a relaxed In0.
View Article and Find Full Text PDFOur scanning tunneling microscopy (STM) studies show that noble metals (Ag, Au) form a wide variety of 1-D structures on the high-index Si(5 5 12) surface. At coverages below 0.25 monolayer (ML), both metals grow as overlayer rows with an inter-row spacing of approximately 5 nm.
View Article and Find Full Text PDF