Publications by authors named "A A Aligia"

We develop a theory that explains the low-energy optical excitations near 1.5 eV observed by optical experiments in NiPS_{3}. Using ab initio methods, we construct a two-band Hubbard model for two effective Ni orbitals.

View Article and Find Full Text PDF

The paradigm of Landau's Fermi liquid theory has been challenged with the finding of a strongly interacting Fermi liquid that cannot be adiabatically connected to a non-interacting system. A spin-1 two-channel Kondo impurity with anisotropy D has a quantum phase transition between two topologically different Fermi liquids with a peak (dip) in the Fermi level for D < D (D > D). Extending this theory to general multi-orbital problems with finite magnetic field, we reinterpret in a unified and consistent fashion several experimental studies of iron phthalocyanine molecules on Au(111) that were previously described in disconnected and conflicting ways.

View Article and Find Full Text PDF

We revisit the theory of the Kondo effect observed by a scanning-tunneling microscope (STM) for transition-metal atoms (TMAs) on noble-metal surfaces, including d and s orbitals of the TMA, surface and bulk conduction states of the metal, and their hopping to the tip of the STM. Fitting the experimentally observed STM differential conductance for Co on Cu(111) including both the Kondo feature near the Fermi energy and the resonance below the surface band, we conclude that the STM senses mainly the Co s orbital and that the Kondo antiresonance is due to interference between states with electrons in the s orbital and a localized d orbital mediated by the conduction states.

View Article and Find Full Text PDF

We describe the Majorana zero modes in topological hybrid superconductor-semiconductor wires with spin-orbit coupling and magnetic field, in terms of generalized Bloch coordinates φ,θ,δ. When the spin-orbit coupling and the magnetic field are perpendicular, φ and δ are universal in an appropriate coordinate system. We show how to extract the angle θ from the behavior of the Josephson current-phase relation, which enables tomography of the Majorana modes.

View Article and Find Full Text PDF

We study the transport through a molecular junction exhibiting interference effects. We show that these effects can still be observed in the presence of molecular vibrations if Coulomb repulsion is taken into account. In the Kondo regime, the conductance of the junction can be changed by several orders of magnitude by tuning the levels of the molecule, or displacing a contact between two atoms, from nearly perfect destructive interference to values of the order of 2e /h expected in Kondo systems.

View Article and Find Full Text PDF