This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay.
View Article and Find Full Text PDFThe Frontiers in Medicinal Chemistry (FiMC) meeting, which represents the largest international medicinal chemistry conference in Germany, took place from March 14 to 16 2022 in a fully virtual format. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh) together with the Division of Pharmaceutical & Medicinal Chemistry of the German Pharmaceutical Society (DPhG) and a "local" organization committee from the University of Freiburg headed by Manfred Jung, the meeting brought together 271 participants from around 20 countries. The program included 33 lectures by leading scientists from industry and academia as well as early career investigators.
View Article and Find Full Text PDFPIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis.
View Article and Find Full Text PDFSelective inhibition of exclusively transcription-regulating positive transcription elongation factor b/CDK9 is a promising new approach in cancer therapy. Starting from atuveciclib, the first selective CDK9 inhibitor to enter clinical development, lead optimization efforts aimed at identifying intravenously (iv) applicable CDK9 inhibitors with an improved therapeutic index led to the discovery of the highly potent and selective clinical candidate VIP152. The evaluation of various scaffold hops was instrumental in the identification of VIP152, which is characterized by the underexplored benzyl sulfoximine group.
View Article and Find Full Text PDFPurpose: 5' adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor.
Methods: High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor.
The ATR kinase plays a key role in the DNA damage response by activating essential signaling pathways of DNA damage repair, especially in response to replication stress. Because DNA damage and replication stress are major sources of genomic instability, selective ATR inhibition has been recognized as a promising new approach in cancer therapy. We now report the identification and preclinical evaluation of the novel, clinical ATR inhibitor BAY 1895344.
View Article and Find Full Text PDFInhibition of monopolar spindle 1 (MPS1) kinase represents a novel approach to cancer treatment: instead of arresting the cell cycle in tumor cells, cells are driven into mitosis irrespective of DNA damage and unattached/misattached chromosomes, resulting in aneuploidy and cell death. Starting points for our optimization efforts with the goal to identify MPS1 inhibitors were two HTS hits from the distinct chemical series "triazolopyridines" and "imidazopyrazines". The major initial issue of the triazolopyridine series was the moderate potency of the HTS hits.
View Article and Find Full Text PDFThe serine/threonine kinase TBK1 (TANK-binding kinase 1) and its homologue IKKε are noncanonical members of the inhibitor of the nuclear factor κB (IκB) kinase family. These kinases play important roles in multiple cellular pathways and, in particular, in inflammation. Herein, we describe our investigations on a family of benzimidazoles and the identification of the potent and highly selective TBK1/IKKε inhibitor BAY-985.
View Article and Find Full Text PDFThe DNA damage response (DDR) secures the integrity of the genome of eukaryotic cells. DDR deficiencies can promote tumorigenesis but concurrently may increase dependence on alternative repair pathways. The ataxia telangiectasia and Rad3-related (ATR) kinase plays a central role in the DDR by activating essential signaling pathways of DNA damage repair.
View Article and Find Full Text PDFThe availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival.
View Article and Find Full Text PDFPurpose: The catalytic function of BUB1 is required for chromosome arm resolution and positioning of the chromosomal passenger complex for resolution of spindle attachment errors and plays only a minor role in spindle assembly checkpoint activation. Here, we present the identification and preclinical pharmacologic profile of the first BUB1 kinase inhibitor with good bioavailability.
Experimental Design: The Bayer compound library was screened for BUB1 kinase inhibitors and medicinal chemistry efforts to improve target affinity and physicochemical and pharmacokinetic parameters resulting in the identification of BAY 1816032 were performed.
Selective inhibition of exclusively transcription-regulating PTEFb/CDK9 is a promising new approach in cancer therapy. Starting from lead compound BAY-958, lead optimization efforts strictly focusing on kinase selectivity, physicochemical and DMPK properties finally led to the identification of the orally available clinical candidate atuveciclib (BAY 1143572). Structurally characterized by an unusual benzyl sulfoximine group, BAY 1143572 exhibited the best overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats.
View Article and Find Full Text PDFThe initiation of mRNA translation has received increasing attention as an attractive target for cancer treatment in the recent years. The oncogenic eukaryotic translation initiation factor 4E (eIF4E) is the major substrate of MAP kinase-interacting kinase 1 (MNK1), and it is located at the junction of the cancer-associated PI3K and MAPK pathways. The fact that MNK1 is linked to cell transformation and tumorigenesis renders the kinase a promising target for cancer therapy.
View Article and Find Full Text PDFThe PI3K-AKT-mTOR signaling cascade is activated in the majority of human cancers, and its activation also plays a key role in resistance to chemo and targeted therapeutics. In particular, in both breast and prostate cancer, increased AKT pathway activity is associated with cancer progression, treatment resistance and poor disease outcome. Here, we evaluated the activity of a novel allosteric AKT1/2 inhibitor, BAY 1125976, in biochemical, cellular mechanistic, functional and in vivo efficacy studies in a variety of tumor models.
View Article and Find Full Text PDFThe kinase Bub1 functions in the spindle assembly checkpoint (SAC) and in chromosome congression, but the role of its catalytic activity remains controversial. Here, we use two novel Bub1 inhibitors, BAY-320 and BAY-524, to demonstrate potent Bub1 kinase inhibition both in vitro and in intact cells. Then, we compared the cellular phenotypes of Bub1 kinase inhibition in HeLa and RPE1 cells with those of protein depletion, indicative of catalytic or scaffolding functions, respectively.
View Article and Find Full Text PDFMonopolar spindle 1 (Mps1) has been shown to function as the key kinase that activates the spindle assembly checkpoint (SAC) to secure proper distribution of chromosomes to daughter cells. Here, we report the structure and functional characterization of two novel selective Mps1 inhibitors, BAY 1161909 and BAY 1217389, derived from structurally distinct chemical classes. BAY 1161909 and BAY 1217389 inhibited Mps1 kinase activity with IC50 values below 10 nmol/L while showing an excellent selectivity profile.
View Article and Find Full Text PDFAndrogen receptor (AR) mutations arise in patients developing resistance to hormone deprivation therapies. Here we describe BAY 1024767, a thiohydantoin derivative with strong antagonistic activity against nine AR variants with mutations located in the AR ligand-binding domain (LBD), and against wild-type AR. Antagonism was maintained, though reduced, at increased androgen levels.
View Article and Find Full Text PDFAlpha-1 antitrypsin deficiency is linked with an increased risk of suffering from lung emphysema. This discovery from the 1960s led to the development of the protease-antiprotease (im)balance hypothesis: Overshooting protease concentrations, especially high levels of elastase were deemed to have an destructive effect on lung tissue. Consequently, it was postulated that efficient elastase inhibitors could alleviate the situation in patients.
View Article and Find Full Text PDFHuman neutrophil elastase (HNE) is a key driver of inflammation in many cardiopulmonary and systemic inflammatory and autoimmune conditions. Overshooting high HNE activity is the consequence of a disrupted protease-antiprotease balance. Accordingly, there has been an intensive search for potent and selective HNE inhibitors with suitable pharmacokinetics that would allowing oral administration in patients.
View Article and Find Full Text PDFHuman neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), bronchiectasis (BE), and pulmonary hypertension (PH).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2014
Silencing the deadly "bla-bla" of superbugs: The natural product aspergillomarasmine A (AMA) showed in vivo efficacy against Enterobacteriaceae, conferring broad β-lactam resistance blaNDM-1 (NDM-1: New Delhi Metallo-β-lactamase 1). In rodents, the natural product restored efficacy of the gold standard meropenem by inhibition of the Zn-containing active site in NDM-1.
View Article and Find Full Text PDFForm and function: The natural product myxopyronin A provides the key to understanding the inhibition of bacterial RNA polymerase and should spark new ideas for the design of new antibiotics against tuberculosis and other infectious diseases.
View Article and Find Full Text PDF