Publications by authors named "van der Woude A"

The year 2022 saw record breaking temperatures in Europe during both summer and fall. Similar to the recent 2018 drought, close to 30% (3.0 million km) of the European continent was under severe summer drought.

View Article and Find Full Text PDF

We analysed gross primary productivity (GPP), total ecosystem respiration (TER) and the resulting net ecosystem exchange (NEE) of carbon dioxide (CO) by the terrestrial biosphere during the summer of 2018 through observed changes across the Integrated Carbon Observation System (ICOS) network, through biosphere and inverse modelling, and through remote sensing. Highly correlated yet independently-derived reductions in productivity from sun-induced fluorescence, vegetative near-infrared reflectance, and GPP simulated by the Simple Biosphere model version 4 (SiB4) suggest a 130-340 TgC GPP reduction in July-August-September (JAS) of 2018. This occurs over an area of 1.

View Article and Find Full Text PDF

Background: Mannitol is a C(6) polyol that is used in the food and medical sector as a sweetener and antioxidant, respectively. The sustainable production of mannitol, especially via the direct conversion of CO by photosynthetic cyanobacteria, has become increasingly appealing. However, previous work aiming to achieve mannitol production in the marine sp.

View Article and Find Full Text PDF

Mycobacterium tuberculosis requires a large number of secreted and exported proteins for its virulence, immune modulation and nutrient uptake. Most of these proteins are transported by the different type VII secretion systems. The most recently evolved type VII secretion system, ESX-5, secretes dozens of substrates belonging to the PE and PPE families, which are named for conserved proline and glutamic acid residues close to the amino terminus.

View Article and Find Full Text PDF

Mycobacteria produce a capsule layer, which consists of glycan-like polysaccharides and a number of specific proteins. In this study, we show that, in slow-growing mycobacteria, the type VII secretion system ESX-5 plays a major role in the integrity and stability of the capsule. We have identified PPE10 as the ESX-5 substrate responsible for this effect.

View Article and Find Full Text PDF

Background: Erythritol is a polyol that is used in the food and beverage industry. Due to its non-caloric and non-cariogenic properties, the popularity of this sweetener is increasing. Large scale production of erythritol is currently based on conversion of glucose by selected fungi.

View Article and Find Full Text PDF

Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

Background: This study aimed at exploring the molecular physiological consequences of a major redirection of carbon flow in so-called cyanobacterial cell factories: quantitative whole-cell proteomics analyses were carried out on two (14)N-labelled Synechocystis mutant strains, relative to their (15)N-labelled wild-type counterpart. Each mutant strain overproduced one specific commodity product, i.e.

View Article and Find Full Text PDF

Background: Molecular engineering of the intermediary physiology of cyanobacteria has become important for the sustainable production of biofuels and commodity compounds from CO2 and sunlight by "designer microbes." The chemical commodity product L-lactic acid can be synthesized in one step from a key intermediary metabolite of these organisms, pyruvate, catalyzed by a lactate dehydrogenase. Synthetic biology engineering to make "designer microbes" includes the introduction and overexpression of the product-forming biochemical pathway.

View Article and Find Full Text PDF

Deletion of pathways for carbon-storage in the cyanobacterium Synechocystis sp. PCC6803 has been suggested as a strategy to increase the size of the available pyruvate pool for the production of (heterologous) chemical commodities. Here we show that deletion of the pathway for glycogen synthesis leads to a twofold increased lactate production rate, under nitrogen-limited conditions, whereas impairment of polyhydroxybutyrate synthesis does not.

View Article and Find Full Text PDF

The pathogenicity of mycobacteria is closely associated with their ability to export virulence factors. For this purpose, mycobacteria possess different protein secretion systems, including the accessory Sec translocation pathway, SecA2. Although this pathway is associated with intracellular survival and virulence, the SecA2-dependent effector proteins remain largely undefined.

View Article and Find Full Text PDF

A striking characteristic of mycobacteria is the presence of an unusual outer membrane which forms a thick permeability barrier and provides resistance to many antibiotics. Although specialized proteins must reside in this layer, only few mycolate outer membrane (MOM) proteins have been identified to date. Their discovery is complicated by difficulties in obtaining good separation of mycobacterial inner and outer membranes.

View Article and Find Full Text PDF

Protein secretion is an essential determinant of mycobacterial virulence. Mycobacterium tuberculosis has a unique cell envelope consisting of two lipid bilayers, which requires dedicated protein secretion pathways. The conserved general Sec and Tat translocation systems are responsible for protein transport across the inner membrane and are both essential.

View Article and Find Full Text PDF

Mycobacteria use the dedicated type VII protein secretion systems ESX-1 and ESX-5 to secrete virulence factors across their highly hydrophobic cell envelope. The substrates of these systems include the large mycobacterial PE and PPE protein families, which are named after their characteristic Pro-Glu and Pro-Pro-Glu motifs. Pathogenic mycobacteria secrete large numbers of PE/PPE proteins via the major export pathway, ESX-5.

View Article and Find Full Text PDF

The mycobacterial cell envelope is characterized by the presence of a highly impermeable second membrane, which is composed of mycolic acids intercalated with different unusual free lipids, such as lipooligosaccharides (LOS). Transport across this cell envelope requires a dedicated secretion system for extracellular proteins, such as PE_PGRS proteins, which are specific mycobacterial proteins with polymorphic GC-rich sequence (PGRS). In this study, we set out to identify novel components involved in the secretion of PE_PGRS proteins by screening Mycobacterium marinum transposon mutants for secretion defects.

View Article and Find Full Text PDF